2.7, \#9, 12, \& 17: Determine whether each graph depicts an symmetric with respect to the x-axis, y-axis, origin, or none of these.
(a) $x=-|y|-4$
(b) $|x|+|y|=4$
(c) $y=\frac{1}{2} x-3$.
$\mathbf{2 . 7}, \# \mathbf{3 4 , 3 6}, \mathbf{4 4 , 4 6}$: Determine whether the following functions are even, odd, or neither. If neither, give counterexamples.
(a) $p(x)=-|x|+12 x^{10}+5$
(b) $m(x)=-4 x^{5}+2 x^{3}+x$
(c) $g(x)=\frac{x^{3}}{2(x-1)^{3}}$
(d) $w(x)=\frac{-\sqrt[3]{x}}{x^{2}+1}$
2.7, \#66: Graph the function s given by
$s(x)= \begin{cases}-x-1 & \text { for } x \geq 1 \\ \sqrt{x+1} & \text { for } x>-1\end{cases}$

2.8, Problem: Let $a(x)=\frac{x-4}{x^{2}-25}, b(x)=\frac{x+5}{16-4 x}$, and $c(x)=\sqrt{x-5}$. Find the formulas for the following functions and indicate their domains in interval notation.
(a) $(a \cdot b)(x)$
(b) $c^{2}(x)=(c \cdot c)(x)$
(c) $\left(\frac{a}{b}\right)(x)$
(d) $(a+c)(x)$
2.8, Problem: Let $f(x)=x^{3}-4 x, g(x)=\frac{3}{x-4}, h(x)=\frac{4}{x^{2}-8}$, and $k(x)=x^{2}$. For parts (b) through (d), find the formulas for the following functions and indicate their domains in interval notation.
(a) Find $(f \circ f)(2)$.
(b) $(k \circ g)(x)$
(c) $(g \circ k)(x)$
(d) $(g \circ h)(x)$
2.8,\#88: The base cost to buy tickets online for a Slayer concert is $\$ 60$ per ticket.
(a) Write a formula for the function C representing the base cost for x tickets.
(b) Sales tax is 7.5% and, regardless of the number of tickets purchased, each sale has an $\$ 8$ processing fee. Write a function T representing the total cost for a purchase with base cost of a dollars.
(c) Find a formula for $T \circ C$ and interpret the meaning of $(T \circ C)(x)$.
2.8, \#94: Let $h(x)=\sqrt[4]{9 x-5}$. Find two functions f and g such that $h=f \circ g$.

2.8, \#102: Find the following function values, if they exist, using the graph on the left.
(a) $(m+p)(1)$
(b) $(p-m)(-4)$
(c) $\left(\frac{m}{p}\right)(3)$
(d) $(m \cdot p)(3)$
(e) $(m \circ p)(0)$
(f) $(p \circ m)(0)$
(g) $p(m(-4))$
2.8, $\# \mathbf{1 0 4}$: Suppose that the graphs of two functions f and g are given, respectively by graph $(f)=$ $\{(2,4), 6,-1),(4,-2),(0,3),(-1,6)\}$ and $\operatorname{graph}(g)=\{(4,3),(0,6),(5,7),(6,0)\}$. Find
(a) $(g \cdot f)(0)$
(b) $(g \circ f)(0)$

