2.7, #9, 12, & 17: Determine whether each graph depicts an symmetric with respect to the x-axis, y-axis, origin, or none of these.

- (a) x = -|y| 4
- (b) |x| + |y| = 4
- (c) $y = \frac{1}{2}x 3$.

2.7, #34,36,44,46: Determine whether the following functions are even, odd, or neither. If neither, give counterexamples.

- (a) $p(x) = -|x| + 12x^{10} + 5$
- (b) $m(x) = -4x^5 + 2x^3 + x$
- (c) $g(x) = \frac{x^3}{2(x-1)^3}$
- (d) $w(x) = \frac{-\sqrt[3]{x}}{x^2+1}$

2.8, Problem: Let $a(x) = \frac{x-4}{x^2-25}$, $b(x) = \frac{x+5}{16-4x}$, and $c(x) = \sqrt{x-5}$. Find the formulas for the following functions and indicate their domains in interval notation.

- (a) $(a \cdot b)(x)$
- (b) $c^{2}(x) = (c \cdot c)(x)$
- (c) $\left(\frac{a}{b}\right)(x)$
- (d) (a+c)(x)

2.8, Problem: Let $f(x) = x^3 - 4x$, $g(x) = \frac{3}{x-4}$, $h(x) = \frac{4}{x^2-8}$, and $k(x) = x^2$. For parts (b) through (d), find the formulas for the following functions and indicate their domains in interval notation.

- (a) Find $(f \circ f)(2)$.
- (b) $(k \circ g)(x)$
- (c) $(g \circ k)(x)$
- (d) $(g \circ h)(x)$

2.8, #88: The base cost to buy tickets online for a Slaver concert is \$60 per ticket.

- (a) Write a formula for the function C representing the base cost for x tickets.
- (b) Sales tax is 7.5% and, regardless of the number of tickets purchased, each sale has an \$8 processing fee. Write a function T representing the total cost for a purchase with base cost of a dollars.
- (c) Find a formula for $T \circ C$ and interpret the meaning of $(T \circ C)(x)$.

2.8, **#94:** Let $h(x) = \sqrt[4]{9x-5}$. Find two functions f and g such that $h = f \circ g$.

2.8, \#102: Find the following function values, if they exist, using the graph on the left.

(a) (m + p)(1)(b) (p - m)(-4)(c) $\left(\frac{m}{p}\right)(3)$ (d) $(m \cdot p)(3)$ (e) $(m \circ p)(0)$ (f) $(p \circ m)(0)$ (g) p(m(-4))

2.8, #104: Suppose that the graphs of two functions f and g are given, respectively by graph $(f) = \{(2, 4), 6, -1), (4, -2), (0, 3), (-1, 6)\}$ and graph $(g) = \{(4, 3), (0, 6), (5, 7), (6, 0)\}$. Find

- (a) $(g \cdot f)(0)$
- (b) $(g \circ f)(0)$