Standard Forms of an Equation of a Parabola with Vertex at the Origin		
	Axis of Symmetry: y-axis	Axis of Symmetry: x-axis
Equation:	$x^2 = 4py$	$y^2 = 4px$
Vertex:	(0, 0)	(0, 0)
Focus:	(0, <i>p</i>)	(<i>p</i> , 0)
Directrix:	<i>y</i> = - <i>p</i>	<i>x</i> = - <i>p</i>
Axis of symmetry:	<i>x</i> = 0	<i>y</i> = 0
Graph: (<i>p</i> > 0)	y = -p $p > 0 parabola opens upward$ $y = -p$	x = -p F(p, 0) x = -p
Graph: (<i>p</i> < 0)	y = $-p$ F(0, p) F(0, p)	y $p < 0$ parabola opens to the left F(p, 0) $x = -p$

11.3, \# 13 (extended): Consider the parabola and the points depicted below.

(a). How do the values of d_1 and d_2 compare? What about d_3 and d_4 ? What is the geometric reason for why?

(b). What is the equation of the parabola graphed?

11.3, # 27: Consider the equation $x^2 = -4y$. (a). Does the parabola open upward, downward, leftward, or rightward? Why?

(b). Identify the value of p for the parabola.

(c). Identify the focus, directrix, and focal diameter of $\frac{4}{6}$

- (d). Identify the endpoints of the latus rectum.
- (e). Graph the parabola.

11.3, # 61: Find the equation of the parabola with vertex at the origin and directrix at x = 4. Then, give an equation for its axis of symmetry.

4.1, # 48: Consider the function $s(x) = \frac{2}{x-3}$. (a). Sketch the graph, and identify any asymptotes.

(b). Is s one-to-one? If so, find the inverse of s.

(c). Identify the domain and range of s^{-1} if s^{-1} exists.

4.2, # 28: Consider the function $g(x) = 4^{x+1} + 2$. (a). Sketch the graph, and identify any asymptotes.

(b). Give the domain and range of g.

(c). Find the inverse function of g.

 4.2, # 46: Suppose that \$8000 is invested at 3.5% interest for 20 years. (a). What is the resulting amount if the interest is compounded monthly? Leave your answer as you would plug it into your calculator. 	4.4, # 62: Combine all terms of the expression $\overline{15 \log c + \log(k^2 + k)} - \frac{1}{4} \log d - \frac{3}{4} \log k$ into one logarithm with coefficient 1.
(b). What is the resulting amount if the interest is com- pounded continuously? Leave your answer as you would plug it into your calculator.	Problem: The half-life of ${}^{18}F$ is 110 minutes. How long does it take for a sample to decay to 70% of its original amount?
(c). If compounded continuously, how long did it take for the investment to earn \$100 in interest?	 5.1, # 74: The angle θ = 315° intercepts an arc on a circle of radius 2. (a). Find the length of the arc intercepted by the central angle θ.
Problem: Find the domain of the function $f(x) = \log_3\left(\frac{7-x}{(x+2)^2(x-3)}\right)$.	(b). The arc is the boundary of a sector θ defines. Find the area of that sector.
	<u>Problem</u> : Find all angles on $[0, 2\pi)$ where $\sin x = \frac{\sqrt{3}}{2}$.
Problem: Solve the following equations: (a). $4^{\log_4(a-5)} = 10$.	<u>Problem</u>: Find all angles on $[0, 2\pi)$ where $\sin x = -\frac{1}{5}$.
	5.3, #61: Find all angles on $[0, 2\pi)$ where $\tan x = -\frac{\sqrt{3}}{3}$.
(b). $5 \cdot (4)^{2n-5} + 3 = 11.$	<u>Problem</u>: Given $\cos(\alpha) = \frac{4}{5}$, $\frac{3\pi}{2} < \alpha < 2\pi$, and $\sin \beta = -\frac{5}{13}$, $\cos \beta < 0$, determine $\tan(\alpha + \beta)$.
(c). $3^{6x+5} = 5^{2x}$.	<u>Problem</u> : Determine both the point on the unit circle and the unit vector determined by $\theta = \frac{5\pi}{6}$. How do they compare?
(d). $\log_3 y + \log_3(y+6) = 3$	Problem: Identify the period and phase shift (relative to $y = \tan x$) for the graph of $y = -3\tan\left(4x + \frac{\pi}{2}\right)$. Then, find the domain of $y = -3\tan\left(4x + \frac{\pi}{2}\right)$.