Problem 1:

(1). Notice this is a rectangular (prism) region, so the integral is

$$
\int_{0}^{\ln 2} \int_{1}^{3} \int_{0}^{2} y z e^{x} d z d y d x=\left(\int_{0}^{2} z d z\right)\left(\int_{1}^{3} y d y\right)\left(\int_{0}^{\ln 2} e^{x} d x\right)
$$

and since $e^{0}=1$ and $e^{\ln 2}=2$, this is

$$
\left(\left.\frac{1}{2} z^{2}\right|_{0} ^{2}\right)\left(\left.\frac{1}{2} y^{2}\right|_{1} ^{3}\right)\left(\left.e^{x}\right|_{0} ^{\ln 2}\right)=2 \cdot 4 \cdot 1=8
$$

(2). As written in the integral, we have $0 \leq y \leq \pi$ and $y \leq x \leq \pi$, meaning our region is bounded by $y=x$ on the left and $x=\pi$ on the right, and we are sweeping up from $y=0$ to $y=\pi$. So, our region is the triangle with vertices at $(0,0),(\pi, 0)$, and (π, π). If we want to integrate with respect to x first, we then notice looking at this triangle that our region is bounded above by the line $y=x$ and below by the line $y=0$, and we are considering values of x between 0 and π. Thus, the integral is

$$
\int_{0}^{\pi} \int_{0}^{x} 2 \cos \left(x^{2}\right) d y d x
$$

One note about Problem 1 (1): It was a very common error to have $\int_{0}^{\ln 2} e^{x}=e^{\ln 2}$. You must ALWAYS be careful with 0 as a bound of integration - you can't just assume that gives you 0 as the function value when you use the Fundamental Theorem of Calculus.

Two notes about Problem 1 (2): First, the integrand has NOTHING to do with the region of integration. A few of you gave me sketches of trig function graphs, and you shouldn't have because no trig functions occur in your bounds of integration. Second, a number of you gave me the triangle with vertices at $(0,0),(0, \pi)$, and (π, π). This is erroneous because we have $y \leq x \leq \pi$, not $0 \leq x \leq y$.

Problem 2: We let $f(x, y)=1+\frac{1}{2} x^{2}+3 y^{2}$.
(a). $\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\langle x, 6 y\rangle$, so $\nabla f(2,1)=\langle 2,6\rangle$.
(b). We need unit vectors to compute directional derivatives. $\langle-4,3\rangle$ is not a unit vector, but it has length 5 , so we use the unit vector $\mathbf{u}=\langle-4 / 5,3 / 5\rangle$. The directional derivative of f at $(2,1)$ in the direction of $\langle-4,3\rangle$ is therefore $D_{\mathbf{u}} f(2,1)=\mathbf{u} \cdot \nabla f(2,1)=\langle-4 / 5,3 / 5\rangle \cdot\langle 2,6\rangle=2$.
(c). The unit vector \mathbf{v} that gives the direction of steepest ascent at $(2,1)$ is the unit vector in the direction of $\nabla f(2,1)$. Since $|\langle 2,6\rangle|=\sqrt{40}, \mathbf{v}=\frac{1}{\sqrt{40}}\langle 2,6\rangle$.
(d). For the surface $F(x, y, z)=f(x, y)-z=1+\frac{1}{2} x^{2}+3 y^{3}-z=0$, a normal vector \mathbf{n} at the point $P(2,1,6)$ is $\nabla F(2,1,6)=\langle 2,6,-1\rangle$.

Problem 3:

(a). $f_{x}=2 x-1$ and $f_{y}=-8 y$, so $f_{x x}=2, f_{x y}=0$, and $f_{y y}=-8$. Thus, $D(1,0)=$ $f_{x x}(1,0) f_{y y}(1,0)-f_{x y}(1,0)^{2}=2(-8)-0^{2}=-16<0$, so $P(1,0)$ is a saddle point.
(b). $u=\frac{x}{y}$ and $v=y$, so $y=v$, and $x=y u=u v$. Thus, $J(u, v)=\left|\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=\left|\begin{array}{ll}v & u \\ 0 & 1\end{array}\right|=v$.
(c). The line segment from $(0,0)$ to $(1,1)$ is parametrized by $\mathbf{r}(t)=\langle t, t\rangle, 0 \leq t \leq 1$, so $\mathbf{r}^{\prime}(t)=\langle 1,1\rangle$ and $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{2}$. This means that since $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=\sqrt{2} d t, \int_{C}(x+y) d s=\int_{0}^{1}(t+t) \sqrt{2} d t=$ $\sqrt{2} \int_{0}^{1}(2 t) d t=\sqrt{2}$.
(d). Since \mathbf{F} has the potential function φ, \mathbf{F} is conservative, meaning the fundamental theorem of calculus for line integrals applies. C starts at $\mathbf{r}(0)=(0,2 \cdot 0)=(0,0)$ and ends at $\mathbf{r}(1)=(1,2 \cdot 1)=(1,2)$. Therefore, the fundamental theorem of calculus for line integrals says $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\varphi(1,2)=\varphi(0,0)=(1 \cdot 2)-(0 \cdot 0)=2$.
(e). Converting to spherical coordinates, D is given by

$$
\begin{gathered}
\{(\rho, \varphi, \theta): 0 \leq \rho \leq 1,0 \leq \varphi \leq \pi, 0 \leq \pi \leq 2 \pi\} \\
\sqrt{x^{2}+y^{2}+z^{2}}=\rho, \text { and } d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta . \text { Therefore } \\
\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{3} \sin \varphi d \rho d \varphi d \theta
\end{gathered}
$$

Problem 4: Our constraint is $g(x, y)=x^{2}-3 x y+4 y^{2}=14$, so $\nabla f=\lambda \nabla g$ becomes $\langle 1,-2\rangle=$ $\lambda\langle 2 x-3 y, 8 y-3 x\rangle$. This tells us $1=\lambda(2 x-3 y)$ and $-2=\lambda(8 y-3 x)$. Since we cannot have $2 x-3 y=0$ and $8 y-3 x$ in these equations (otherwise $1=0$ and $-2=0$!), we can divide by them to isolate λ on both sides, getting us $\frac{1}{2 x-3 y}=\lambda=\frac{-2}{8 y-3 x}$. Cross multiplying, $-2(2 x-3 y)=8 y-3 x$ and therefore $x=-2 y$. Substituting this into the constraint $g(x, y)=14$, we get $4 y^{2}+6 y^{2} 1+4 y^{2}=14$, meaning $14 y^{2}=14$ and $y= \pm 1$. If $y=1, x=-2$, and if $y=-1, x=2 . f(2,-1)=4$ and $f(-2,1)=-4$, so the method of Lagrange multipliers tells us that the maximum and minimum values of f on the constraint curve $g(x, y)=14$ are respectively 4 and -4 .

Problem 5:

We want to find the volume of the solid bounded between the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane. From the picture, our top z is $4-x^{2}-y^{2}$, and our bottom z is the $x y$-plane, $z=0$. Also, from the picture, it is also apparent that the solid is widest at the bottom, and therefore the boundary of the projection of the solid onto the $x y$-plane is therefore $4-x^{2}-y^{2}=0$, i.e. $x^{2}+y^{2}=4$, the circle of radius 2 centered at the origin. Therefore, the projection of the solid onto the $x y$-plane is $R=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}=\{(r, \theta): 0 \leq r \leq 2,0 \leq r \leq 2 \pi\}$. This means the volume of our solid is $\iint_{R}\left(4-x^{2}-y^{2}\right)-(0) d A=\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right)(r d r d \theta)=\left.2 \pi\left(2 r^{2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{2}=2 \pi(8-4)=8 \pi$.

Problem 6:

(a). True. For $\mathbf{F}=\langle f, g\rangle=\left\langle y e^{x}+x^{2}, e^{x}+\sin y\right\rangle, f_{y}=e^{x}$ and $g_{x}=e^{x}$, and therefore $f_{y}=g_{x}$, meaning \mathbf{F} is conservative on \mathbb{R}^{2}.
(b). True. Since C is the unit circle $x^{2}+y^{2}=1$, it's a level curve for $g(x, y)=1$, meaning $\nabla g=\langle 2 x, 2 y\rangle$ is normal to C everywhere. Therefore, $\mathbf{F}=\langle x, y\rangle=\frac{1}{2} \nabla g$ is normal to C everywhere, meaning the tangential component of \mathbf{F} on C is zero everywhere. Therefore $\mathbf{F} \cdot T=0$ everywhere on C, so the circulation $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ is zero.
(c). False. Flux integrals involve \mathbf{n} in the dot product with \mathbf{F}, so the integrand should be $\mathbf{F} \cdot \mathbf{n}$, not $\mathbf{F} \cdot \mathbf{n}$.
(d). True. If R is given by x between 2 functions of y and y between 2 numbers, then we integrate x first, keeping these range of "values" given as our bounds of integration for the area of R. Since we're integrating $d x d y, d A=d x d y$, and our integrand is 1 .

