Problem 1:

- (a). Area $=\frac{\sqrt{6}}{2}$
- (b). 2x + y z = 3.
- (c). $\mathbf{r}(t) = \langle 1+t, 2, 1+2t \rangle$

Problem 2:

- (1). $\mathbf{u} \cdot \mathbf{v} = 5; \ \theta = \frac{\pi}{3}; \ \operatorname{scal}_{\mathbf{v}} \mathbf{u} = \frac{5}{\sqrt{10}}; \ \operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{1}{2} \langle 2, 1, \sqrt{5} \rangle.$
- (2). $(\frac{1}{2}\ln 2)$ **i**
- (3). Notice $x^2 + 2x xy 2y = x(x+2) y(x+2) = (x-y)(x+2)$, so by cancelling the common factor in the fraction, the answer is 3.
- (4)(a). For $h \neq 0$, $f(h, 0) = \frac{0}{h^4} = 0$, so $f_x(0, 0) = \lim_{h \to 0} \frac{f(h, 0) f(0, 0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$.
- (4)(b). f is not continuous at 0 and hence not differentiable. To show f is not continuous, notice that f has homogeneous denominator (all terms have same degree), so by setting y = mx for different values of m, one would expect to get different limits as $x \to 0$ (e.g. limit is 0 if m = 0, 1/2 if m = 1, etc.).

Problem 3:

- (a). In general the arc length function is $s(t) = \int_0^t |\mathbf{r}'(u)| du$ (note: a number of you set the upper bound of integration to be ∞ , not t; DON'T DO THAT!). Thus, the answer is s(t) = 5t.
- (b). No, since $|\mathbf{r}'(t)| = 5 \neq 1$.
- (c). $\mathbf{N}(t) = \langle -\cos 3t, -\sin 3t, 0 \rangle.$

Problem 4:

(a).
$$\kappa(t) = \frac{2}{(1+4t^2)^{3/2}}$$

(b). $\kappa'(t) = \frac{-24t}{(1+4t^2)^{5/2}}$. $\kappa' = 0$ when t = 0, $\kappa' > 0$ when t < 0, and $\kappa' < 0$ when t > 0, so κ must maximize at t = 0. Therefore, at the point $\mathbf{r}(0) = (0, 1)$, the maximum curvature is attained, and that maximum curvature is $\kappa(0) = 2$.

Problem 5:

(a).
$$\frac{\partial f}{\partial y} = 2ye^{xy} + xy^2 e^{xy}; \quad \frac{\partial^2 f}{\partial x \partial y} = 3y^2 e^{xy} + xy^3 e^{xy}.$$

(b). $\frac{\partial z}{\partial s}\Big|_{(r,s)=(0,1)} = 6.$

Problem 6:

- (a). False. $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if the vectors \mathbf{u} and \mathbf{v} are parallel.
- (b). True. Level curves for z = f(x, y), necessarily of the form f(x, y) = c are ALWAYS curves in the xy-plane.
- (c). False. A circle is $\mathbf{r}(t) = \langle a \cos t, a \sin t \rangle$, so $\kappa(t) = \frac{1}{a}$, meaning bigger radii results in smaller κ , the opposite of what's stated.
- (d). True. The torsion of a plane curve is ALWAYS zero since the binormal vector is constant, meaning $\frac{d\mathbf{B}}{ds} = 0$.
- (e). True. The degree of the numerator exceeds the degree of the denominator, so it will go to 0 faster than the denominator will, forcing $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. Thus, $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$, meaning f is continuous at (0,0).