Problem 1:

(a). Area $=\frac{\sqrt{6}}{2}$
(b). $2 x+y-z=3$.
(c). $\mathbf{r}(t)=\langle 1+t, 2,1+2 t\rangle$

Problem 2:

(1). $\mathbf{u} \cdot \mathbf{v}=5 ; \theta=\frac{\pi}{3} ; \operatorname{scal}_{\mathbf{v}} \mathbf{u}=\frac{5}{\sqrt{10}} ; \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{1}{2}\langle 2,1, \sqrt{5}\rangle$.
(2). $\left(\frac{1}{2} \ln 2\right) \mathbf{i}$
(3). Notice $x^{2}+2 x-x y-2 y=x(x+2)-y(x+2)=(x-y)(x+2)$, so by cancelling the common factor in the fraction, the answer is 3 .
(4)(a). For $h \neq 0, f(h, 0)=\frac{0}{h^{4}}=0$, so $f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0$.
(4)(b). f is not continuous at 0 and hence not differentiable. To show f is not continuous, notice that f has homogeneous denominator (all terms have same degree), so by setting $y=m x$ for different values of m, one would expect to get different limits as $x \rightarrow 0$ (e.g. limit is 0 if $m=0,1 / 2$ if $m=1$, etc.).

Problem 3:

(a). In general the arc length function is $s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$ (note: a number of you set the upper bound of integration to be ∞, not t; DON'T DO THAT!). Thus, the answer is $s(t)=5 t$.
(b). No, since $\left|\mathbf{r}^{\prime}(t)\right|=5 \neq 1$.
(c). $\mathbf{N}(t)=\langle-\cos 3 t,-\sin 3 t, 0\rangle$.

Problem 4:

(a). $\kappa(t)=\frac{2}{\left(1+4 t^{2}\right)^{3 / 2}}$
(b). $\kappa^{\prime}(t)=\frac{-24 t}{\left(1+4 t^{2}\right)^{5 / 2}} . \kappa^{\prime}=0$ when $t=0, \kappa^{\prime}>0$ when $t<0$, and $\kappa^{\prime}<0$ when $t>0$, so κ must maximize at $t=0$. Therefore, at the point $\mathbf{r}(0)=(0,1)$, the maximum curvature is attained, and that maximum curvature is $\kappa(0)=2$.

Problem 5:

(a). $\frac{\partial f}{\partial y}=2 y e^{x y}+x y^{2} e^{x y} ; \frac{\partial^{2} f}{\partial x \partial y}=3 y^{2} e^{x y}+x y^{3} e^{x y}$.
(b). $\left.\frac{\partial z}{\partial s}\right|_{(r, s)=(0,1)}=6$.

Problem 6:

(a). False. $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if the vectors \mathbf{u} and \mathbf{v} are parallel.
(b). True. Level curves for $z=f(x, y)$, necessarily of the form $f(x, y)=c$ are ALWAYS curves in the $x y$-plane.
(c). False. A circle is $\mathbf{r}(t)=\langle a \cos t, a \sin t\rangle$, so $\kappa(t)=\frac{1}{a}$, meaning bigger radii results in smaller κ, the opposite of what's stated.
(d). True. The torsion of a plane curve is ALWAYS zero since the binormal vector is constant, meaning $\frac{d \mathbf{B}}{d s}=0$.
(e). True. The degree of the numerator exceeds the degree of the denominator, so it will go to 0 faster than the denominator will, forcing $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. Thus, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=$ $f(0,0)$, meaning f is continuous at $(0,0)$.

