
Math 2153 S2017: Additional 13.8 solutions

13.8, Problem 45: Find the absolute maximum and minimum values of f(x, y) = 4+2x2 +y2

on the region R = {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}.

Solution: Notice that f as a polynomial is continuous and R is a closed and bounded region.
Therefore, our modified Extreme Value Theorem applies and tells us that absolute extrema for f
exist on R, and they occur either in the interior at critical points or on the boundary. fx = 4x
and fy = 2y, so our only critical point is (0, 0), which is in the interior. fxx = 4, fxy = 0, and
fyy = 0, so D(0, 0) = 8 > 0, and fxx(0, 0) = 4 > 0, so (0, 0) is thus a local minimum. Now we test
the boundary: the boundary is a square, so we consider each segment separately. On the left side,
x = −1 and −1 ≤ y ≤ 1, so f(x, y) = 6 + y2, maximmizing at y = ±1 and minimizing at y = 0,
where f(−1, 0) = 6. The other sides are similar: f maximizes at the corners and minimizes on
the boundary at (0, 1) and (0,−1). However, f is 5 here and 4 at (0, 0). Hence, f has an absolute
minimum of 4 at (0, 0) on R.

13.8, Problem 53: If possible, find the absolute maximum and/or minimum values of the
function f(x, y) = x2 + y2 − 4 on the region R = {(x, y) : x2 + y2 < 4}.

Solution: Geometrically, R is the interior of the circle of radius 2 centered at (0, 0). f has a
critical point at (0, 0), and f(0, 0) = −4. Since x2 + y2 > 0 when either x or y is nonzero, we then
konw f(x, y) > −4 elsewhere on R, so f has an absolute minimum of −4 at (0, 0) on R. Now we
ask: what about the absolute maximum? Observe that increasing x2 + y2 (i.e. moving outward
from the origin) increases f , and we can bring x2 + y2 as close to 4 as we want but can’t have it
actually reach 4 itself because we’re dealing with an open disk. So, f would maximize at 0 on the
boundary, but since the boundary is completely omitted, no absolute maximum on R exists for f .

13.8, Problem 58: Find the point(s) on the cone z2 = x2 + y2 nearest the point P (1, 4, 0).

Solution: We want to minimize distance, or equivalently, distance squared from (1, 4, 0). Let d2

denote distance squared. Then, d2(x, y, z) = (x−1)2+(y−4)2+z2, and since we’re only considering
points on the cone z2 = x2 + y2, this is d2(x, y) = (x− 1)2 + (y− 4)2 + x2 + y2. Now we can apply
our second derivative test, starting by looking for critical points. d2x = 2(x− 1) + 2x = 4x− 2 and
d2y = 2(y − 4) + 2y, so if d2x = d2y = 0, then x = 1/2 and y = 2. d2xx = 4, d2xy = 0, and d2yy = 4,

so by the second derivative test, (1/2, 2,±
√

17/2) are local minima for d2 and hence d. With an
unbounded surface like a cone, no furthest point (i.e. absolute maximum for d2) can exist, and
obviously, a local minimum must be an absolute minimum, since that’s how distance works: given
an surface and a point, there must be points on the surface closest to that point and moving away
from the local minima, the distance to (1, 4, 0) increases without bound.
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