13.8, Problem 45: Find the absolute maximum and minimum values of $f(x, y)=4+2 x^{2}+y^{2}$ on the region $R=\{(x, y):-1 \leq x \leq 1,-1 \leq y \leq 1\}$.

Solution: Notice that f as a polynomial is continuous and R is a closed and bounded region. Therefore, our modified Extreme Value Theorem applies and tells us that absolute extrema for f exist on R, and they occur either in the interior at critical points or on the boundary. $f_{x}=4 x$ and $f_{y}=2 y$, so our only critical point is $(0,0)$, which is in the interior. $f_{x x}=4, f_{x y}=0$, and $f_{y y}=0$, so $D(0,0)=8>0$, and $f_{x x}(0,0)=4>0$, so $(0,0)$ is thus a local minimum. Now we test the boundary: the boundary is a square, so we consider each segment separately. On the left side, $x=-1$ and $-1 \leq y \leq 1$, so $f(x, y)=6+y^{2}$, maximmizing at $y= \pm 1$ and minimizing at $y=0$, where $f(-1,0)=6$. The other sides are similar: f maximizes at the corners and minimizes on the boundary at $(0,1)$ and $(0,-1)$. However, f is 5 here and 4 at $(0,0)$. Hence, f has an absolute minimum of 4 at $(0,0)$ on R.
13.8, Problem 53: If possible, find the absolute maximum and/or minimum values of the function $f(x, y)=x^{2}+y^{2}-4$ on the region $R=\left\{(x, y): x^{2}+y^{2}<4\right\}$.

Solution: Geometrically, R is the interior of the circle of radius 2 centered at $(0,0) . f$ has a critical point at $(0,0)$, and $f(0,0)=-4$. Since $x^{2}+y^{2}>0$ when either x or y is nonzero, we then konw $f(x, y)>-4$ elsewhere on R, so f has an absolute minimum of -4 at $(0,0)$ on R. Now we ask: what about the absolute maximum? Observe that increasing $x^{2}+y^{2}$ (i.e. moving outward from the origin) increases f, and we can bring $x^{2}+y^{2}$ as close to 4 as we want but can't have it actually reach 4 itself because we're dealing with an open disk. So, f would maximize at 0 on the boundary, but since the boundary is completely omitted, no absolute maximum on R exists for f.
13.8, Problem 58: Find the point(s) on the cone $z^{2}=x^{2}+y^{2}$ nearest the point $P(1,4,0)$.

Solution: We want to minimize distance, or equivalently, distance squared from $(1,4,0)$. Let d^{2} denote distance squared. Then, $d^{2}(x, y, z)=(x-1)^{2}+(y-4)^{2}+z^{2}$, and since we're only considering points on the cone $z^{2}=x^{2}+y^{2}$, this is $d^{2}(x, y)=(x-1)^{2}+(y-4)^{2}+x^{2}+y^{2}$. Now we can apply our second derivative test, starting by looking for critical points. $d_{x}^{2}=2(x-1)+2 x=4 x-2$ and $d_{y}^{2}=2(y-4)+2 y$, so if $d_{x}^{2}=d_{y}^{2}=0$, then $x=1 / 2$ and $y=2 . d_{x x}^{2}=4, d_{x y}^{2}=0$, and $d_{y y}^{2}=4$, so by the second derivative test, $(1 / 2,2, \pm \sqrt{17} / 2)$ are local minima for d^{2} and hence d. With an unbounded surface like a cone, no furthest point (i.e. absolute maximum for d^{2}) can exist, and obviously, a local minimum must be an absolute minimum, since that's how distance works: given an surface and a point, there must be points on the surface closest to that point and moving away from the local minima, the distance to $(1,4,0)$ increases without bound.

