
Sections 1.9 & 2.1: Lagrange Multipliers, Double Integrals over Rectangular Regions Reeve Garrett

1 Lagrange Multipliers

In this section, we seek the maximum and minimum values of an objective function f : R2 → R (or f :
R3 → R) with the restriction that our variables x and y (and z if f has 3 variables) must lie on a constraint
curve (resp., surface) C in the xy-plane (resp., 3D space) given by g(x, y) = 0 (resp., g(x, y, z) = 0).

Theorem 1.1 Let f be a differentiable function in a region of R2 containing a smooth curve C given by
g(x, y) = 0. Assume that f has a local extreme value on C at a point P (a, b). Then, ∇f(a, b) is orthogonal to
the line tangent to C at P . It then follows that if ∇g(a, b) 6= 0 there is a real number λ (called a Lagrange
multiplier) such that ∇f(a, b) = ∇g(a, b).

The result for 3 variables is completely analogous. The second part of the result follows from the fact that
gradients are always orthogonal to level curves. Thus, we have a theorem:

Theorem 1.2 If a point (a, b) is a max or min for f on a curve C given by g(x, y) = 0, then a Lagrange
multiplier equation ∇f(a, b) = λ∇g(a, b) is satisfied for some λ 6= 0.

We consider when such an equation is satisfied:

Procedure 1.3 Let the objective function f and the constraint function g be differentiable on a region of R2

with ∇g 6= 0 on the curve g(x, y) = 0. To locate the extreme values of f subject to the constraint g(x, y) = 0,
carry out the following steps:
1. Find the values of x,y, and λ (if they exist) that satisfy BOTH ∇f(x, y) = λ∇g(x, y) and g(x, y) = 0.
2. Among the values (x, y) found in Step 1, select the pairs (x, y) corresponding to the largest and smallest
function values. These are the maximum and minimum values of f subject to g(x, y) = 0.

Admittedly, 1. doesn’t tell you how to go about finding x, y, and λ, and that’s the hardest part of
Lagrange multiplier problems. So, here are some tips.

Tip 1.4 From ∇f(x, y) = λ∇g(x, y), you get 2 equations fx(x, y) = λgx(x, y) and fy = λgy(x, y). To find
the values of x,y, and λ satisfying them (actually, you don’t really care about solving for λ if you can
get the corresponding x and y), you generally want to do one of the following:
(a). If fx = λgx is an equation of one variable and fy = λgy is an equation of one variable, then you may
find it helpful to use the zero product property from high school algebra (if ab = 0, then a = 0 or b = 0)
to break things up into cases (an example of this approach is given in Example 2 on page 988 of the textbook).
DO NOT forget to consider the constraint equation.
(b). Depending on the setup, you may choose to eliminate λ. This may be done by either solving for λ
in both equations and then setting the two λ values equal, OR you may multiply both equations by some
monomial to get the least common multiple of λgx and λgy on both sides of the equations, allowing you to
set the remaining parts of the equations equal to each other (this is best applied in an example like 1.9 #23
or #28, for instance).

WARNING 1.5 If the given point(s) satisfies the Lagrange Multipliers equation ∇f = λ∇g, then you only
know that the point is a max or min of f on the curve or surface given by the constraint g(x, y) = 0 (or
g(x, y, z) = 0). You will need to justify why it’s a max and not a min or why it’s a min and not a max.

WARNING 1.6 When looking for extrema on a closed and bounded region R, the Lagrange Multiplier pro-
cedure given above is VERY useful when used in conjunction with the Strengthened Extreme Value Theorem.
However, the points found with Lagrange Multipliers are maxima/minima ONLY on the boundary. They
MUST be compared with the maxima/minima found in the interior (which must be critical points) before you
can conclude the points found with Lagrange Multipliers are extrema for the WHOLE region.
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2 Double Integrals over Rectangular Regions

Procedure 2.1 The double integral
∫∫
R

f(x, y)dA over a rectangular region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤

d} may be thought of as a “net volume” between the surface z = f(x, y) and the region R in the xy-plane,
where z > 0 contribute positive volume and z < 0 contribute negative volume. This can be conceptualized
by the general slicing method (see section 6.3 in the text): along the segment x = x0 a ≤ x0 ≤ b in R,

z = f(x, y) and the xy-plane form a 2D shape of area A(x) =
∫ d

c
f(x, y)dy, so the volume of the total region

by the general slicing method is therefore

V =

∫ b

a

A(x)dx =

∫ b

a

∫ d

c

f(x, y)dydx.

Matching geometric intuition, the order can be reversed provided f is continuous.

Theorem 2.2 [Fubini] Let f be continuous on the rectangular region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.
The double integral of f over R may be evaluated by either of the two iterated integrals:∫∫

R

f(x, y)dA =

∫ d

c

∫ b

a

f(x, y)dxdxy =

∫ b

a

∫ d

c

f(x, y)dydx.

Tip 2.3 The following are helpful tips and shortcuts for double integral computation:
(a). In light of Fubini’s Theorem, it’s worth noting that sometimes one order of integration can sometimes
be MUCH easier to compute than the other. ALWAYS try to see if the integrand is a partial derivative of
another function. If f is the partial derivative of some function g with respect to y, you should integrate with
respect to y first, as the fundamental theorem of calculus from first semester calculus will apply.
(b). Let R be as above. If f(x, y) may be written as a product g(x)h(y), where g is a function of just x and
h is a function of just y, then we may rewrite the double integral as a product of single integrals∫∫

R

f(x, y)dA =

(∫ b

a

g(x)dx

)(∫ d

c

h(y)dy

)
.

3 Average Value of a Function in a Region

Recall from Section 5.4 that for an integrable f : R→ R, the average value of f on the interval [a, b] is

f̄ =
1

b− a

∫ b

a

f(x)dx.

Analogously, for an integrable function f : R2 → R, the average value of f on R is

f̄ =
1

area of R

∫∫
R

f(x, y)dA.

For a general region R in the xy-plane,

area of R =

∫∫
R

dA.
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