
Math 2153 - Spring 2017 Name:

Quiz 6 - SOLUTIONS Recitation Time:

SHOW ALL WORK!!! Unsupported answers might not receive full credit. Furthermore, give
me EXACT answers (do NOT use your decimals in your final answers, though they may be used
to approximate where a number is in a graph).

Problem 1 [2 pts] Express the volume of the solid bounded between the surface z = xy2 cos(xy3)
and the rectangle R = {(x, y) : 0 ≤ x ≤ π

2 , 0 ≤ y ≤ 1} in the xy-plane as an integral. Then,
evaluate that integral.
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= 0 + 1/3 = 1/3.

Problem 2 [3 pts] In this problem, we’ll find the closest point(s) on the elliptic cone 4x2 +
9y2 − 16z2 = 0 to the point (1, 1, 0).

(a). [0.5 pts] Set up the three equations resulting from using the method of Lagrange multipliers
for the above scenario.

We’re trying to minimize D(x, y, z) = (x − 1)2 + y − 1)2 + z2 subject to the constraint
g(x, y, z) = 4x2 + 9y2− 16z2 = 0, so we’re getting 3 equations from ∇D = λ∇g, which are
2(x− 1) = 8λx, 2(y − 1) = 18λy, and 2z = −32λz.

(b). [1.5 pts] Use one of the above equations and the zero product property from high school
algebra to find a potential value for λ and use that to solve for x, y, and z. Also, consider
the other case that comes from that application of the zero-product property and find
what point on the cone arises from it.

From the third equation in (a), 2z + 32λz = 0, so 2z(1 + 16λ) = 0, meaning by the
zero product property (1)z = 0 or (2)1 + 16λ = 0. If z = 0, then 4x2 + 9y2 = 0, meaning
x = y = 0; this pair cannot satisfy the other 2 equations in (a), so we disregard this case. In
case (2), λ = − 1

16 , so 2x−2 = −1
2x and 2y−2 = −9

8y, meaning x = 4
5 and y = 16

25 . Plugging
these into the constraint g(x, y, z) = 0, we get 4/25 + (9 · 16)/(252) = 244/625 = z2, so

z = ±2
√
61

25 .

(c). [1 pt] Use (b) to find the closest point(s) on the elliptic cone 4x2 + 9y2 − 16z2 = 0 to the
point (1, 1, 0). Justify how you know that the point you found is indeed the closest point.
You are encouraged to specifically cite theorems on the recitation handouts and appeal to
basic geometric intuition about the cone.
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25 ) = 25/625 + 81/625 + 244/625 = 350/625 = 14/25. The method of La-
grange multipliers (Theorem 1.2, Procedure 1.3 on the handout) tells us that the maxima
and minima of D (and hence the distance function) on the constraint surface occur at the
points found through Lagrange multipliers. The cone is infinite, so no maximum distance
occurs. Hence, the points found must be the closest points on the cone to (1, 1, 0), as it is
where the minimal value of D found through Lagrange mulipliers on the cone occurs, and
hence it is the absolute minimum of D on the cone.



Problem 3 [5 pts] In this problem, we’ll find the absolute maximum and absolute minimum
values of the function f(x, y) = 8xy in/on the region R = {(x, y) : 4x2 + 9y2 ≤ 36}.

(a). [1 pt] Find the critical point(s) of f in the interior of R, classify it/them with the 2nd
Derivative Test, and evaluate f at it/them.

fx = 8y and fy = 8x, so the only critical point is (0, 0), where fx = fy = 0. Also, for all
points fxx = 0, fyy = 0, and fxy = 8, so D(0, 0) = −64 < 0, so (0, 0) is a saddle point.
Also, f(0, 0) = 0.

(b). [0.5 pts] Set up the pair of equations obtained from using Lagrange multipliers on the
boundary.

The boundary curve is g(x, y) = 4x2 + 9y2 = 36, and we’re optimizing f(x, y) = 8xy on
it, so ∇f = λ∇g yields 8y = 8λx and 8x = 18λy.

(c). [0.5 pts] Use part (b) to eliminate λ, and then use this elimination to obtain an equation
p(x, y) = 0 where p(x, y) is a polynomial.

A common multiple for both right hand sides is 72λxy, so multiplying the first equation
by 9y and the second by 4x, we obtain 72y2 = 72λxy = 32x2, so 72y2−32x2 = 0, meaning
9y2 − 4x2 = 0.

(d). [0.5 pts] Factor the above polynomial and use the zero product property from high school
algebra to determine two possible SIMPLE relations between x and y.

(3y − 2x)(3y + 2x) = 0, so y = ±2
3x.

(e). [1.5 pts] Plug the relations found in part (d) into the constraint (boundary curve) to find
the pairs (x, y) on the boundary curve where extreme values occur (this comes for free
from Lagrange Multipliers). Then, evaluate f at those points.

We have 9y2 = 4x2, so plugging into the constraint curve 4x2 +9y2 = 36, we get 8x2 = 36,
so x = ± 3√
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(f). [1 pt] Use the information from parts (a) and (e) and two theorems and/or procedures
from the recitation handouts (state which theorems they are and WHY they apply) to
determine the absolute minimum and maximum values of f in/on R.

R is closed and bounded in R2 and f is continuous on R, so by the Strengthened Extreme
Value Theorem, absolute extreme values for f in/on R occur either at critical points in the
interior or on the boundary. The method of Lagrange multipliers applies to the boundary,
telling us that maximum and minimum values on the boundary are found through Lagrange
multipliers. So, the critical point in the interior is (0,0) and f(0, 0) = 0, the minimum
value of f on the boundary is −24, and the maximum value of f on the boundary is 24.
Therefore, by the Strengthened Extreme Value Theorem, the absolute maximum value of
f in/on R is 24, and the absolute minimum value of f in/on R is −24.


