\qquad
Quiz 2-SOLUTIONS
Recitation Time: \qquad

SHOW ALL WORK!!! Unsupported answers might not receive full credit.
Problem 1 [0.5 pts$]$ State the formula for $\frac{d}{d t}[f(t) \mathbf{r}(t)]$ where f is a scalar-valued function and \mathbf{r} is a vector-valued function. Do not write $\mathbf{r}(t)$ as a pair of components $\mathbf{r}(t)=$ $\langle x(t), y(t)\rangle$ and distribute $f(t)$.
This is the product rule in your textbook, which is $\frac{d}{d t}[f(t) \mathbf{r}(t)]=f^{\prime}(t) \mathbf{r}(t)+f(t) \mathbf{r}^{\prime}(t)$.
Problem $2[1.5 \mathrm{pts}]$ Evaluate the $\operatorname{limit} \lim _{t \rightarrow 0}\left(\frac{1-\cos t}{t} \mathbf{i}-\frac{e^{2 t}-t-1}{t} \mathbf{j}+\frac{\cos t+t^{2} / 2-1}{t^{2}} \mathbf{k}\right)$, $\lim _{t \rightarrow 0}\left(\frac{1-\cos t}{t} \mathbf{i}-\frac{e^{2 t}-t-1}{t} \mathbf{j}+\frac{\cos t+t^{2} / 2-1}{t^{2}} \mathbf{k}\right)=\left(\lim _{t \rightarrow 0} \frac{1-\cos t}{t}\right) \mathbf{i}+\left(\lim _{t \rightarrow 0}-\frac{e^{2 t}-t-1}{t}\right) \mathbf{j}+\left(\lim _{t \rightarrow 0} \frac{\cos t+t^{2} / 2-1}{t^{2}}\right) \mathbf{k}$, so since $\lim _{t \rightarrow 0} \frac{1-\cos t}{t}=0$, as you learned in first semester calculus, $\lim _{t \rightarrow 0} \frac{e^{2 t}-t-1}{t}=\frac{d}{d t}\left(e^{2} t-\right.$ $t)\left.\right|_{t=0}=1$, and by applying L'Hospital's Rule twice (or, by using the Maclaurin series for $\cos t$) we have $\lim _{t \rightarrow 0} \frac{\cos t+t^{2} / 2-1}{t^{2}}=0$, we have that the above limit is $\langle 0,-1,0\rangle$.
Problem 3 [4 pts] Consider the curve $\mathbf{r}(t)=\langle 2 \sin 2 t, 3 t, 2 \cos 2 t\rangle$ for $0 \leq t \leq 4$.
(a). [2 pts] Find a formula for the arc length for the arc length $s(t)$ for any t in general. (Warning: this is distinct from the length of the complete curve).
$\mathbf{r}^{\prime}(t)=\langle 4 \cos 2 t, 3,-4 \sin 2 t\rangle$, so

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{\left(4 \cos ^{2} 2 t\right)^{2}+3^{2}+(-4 \sin 2 t)^{2}}=\sqrt{16 \cos ^{2} 2 t+9+16 \sin ^{2} 2 t}=\sqrt{16+9}=5
$$

Thus

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{0}^{t} 5 d u=\left.(5 u)\right|_{u=0} ^{t}=5 t
$$

(b). [2 pts] State whether the curve is parametrized by arc length and how you know [0.5 pts]. If it is not parametrized by arc length, find another description of the curve that uses arc length as a parameter [1.5 pts].
Since $\left|\mathbf{r}^{\prime}(t)\right|=5 \neq 1$, the curve is not parametrized by arc length. To parametrize by arc length, we use the expression for s we found in part (a), $s=5 t$, and solve for t in terms of s, i.e. $t=\frac{s}{5}$. Then, we substitute that expression into $\mathbf{r}(t)$ to make \mathbf{r} a function of s. Thus the description of \mathbf{r} that uses arc length s as a parameter is

$$
\mathbf{r}(s)=\left\langle 2 \sin \frac{2 s}{5}, \frac{3 s}{5}, 2 \cos \frac{2 s}{5}\right\rangle
$$

Problem $4[4 \mathrm{pts}]$ Suppose that the acceleration of a projectile is given by the vectorvalued function $\mathbf{a}(t)=\left\langle t e^{t}, \sin ^{2} t, \frac{1}{t+1}\right\rangle$ for $t \geq 0$, and suppose the initial position and velocity are given by $\mathbf{r}(0)=\left\langle 2, \frac{1}{2}, 1\right\rangle$ and $\mathbf{v}(0)=\langle 2,2,2$,$\rangle , respectively. Find the value of$ the position function \mathbf{r} for all values of $t \geq 0$, i.e. find $\mathbf{r}(t)$. Show your work. Citing an online integral calculator or a table of integrals will award you no credit for the evaluation of the integral(s).
$\mathbf{v}(t)=\int \mathbf{a}(t) d t=\left\langle\int t e^{t} d t, \int \sin ^{2} t d t, \int \frac{1}{t+1}\right\rangle=\left\langle t e^{t}-e^{t}+c_{1}, \frac{t}{2}-\frac{\sin 2 t}{4}+c_{2}, \ln (t+1)+c_{3}\right\rangle$,
where the integrals are solved via integration by parts, the half angle formula $\sin ^{2} t=$ $\frac{1-\cos 2 t}{2}$, and u-substitution with $u=t+1$, respectively. To solve for c_{1}, c_{2}, and c_{3}, we use our initial condition for \mathbf{v} :

$$
\mathbf{v}(0)=\left\langle-1+c_{1}, c_{2}, c_{3}\right\rangle=\langle 2,2,2\rangle,
$$

meaning $c_{1}=3$ and $c_{2}=c_{3}=2$. Therefore,

$$
\mathbf{v}(t)=\left\langle t e^{t}-e^{t}+3, \frac{t}{2}-\frac{\sin 2 t}{4}+2, \ln (t+1)+2\right\rangle
$$

By integration by parts setting $u=\ln (t+1)$ and $d v=d x$,
$\int \ln (t+1)=t \ln (t+1)-\int \frac{t}{t+1} d t=t \ln (t+1)-\int\left(1-\frac{1}{t+1}\right) d t=t \ln (t+1)-t+\ln (t+1)+C$,
so
$\mathbf{r}(t)=\int \mathbf{v}(t) d t=\left\langle t e^{t}-2 e^{t}+3 t+d_{1}, \frac{t^{2}}{4}+\frac{\cos 2 t}{8}+2 t+d_{2},(t+1) \ln (t+1)-t+2 t+d_{3}\right\rangle$.
$\mathbf{r}(0)=\left\langle-2+d_{1}, \frac{1}{8}+d_{2}, d_{3}\right\rangle=\left\langle 2, \frac{1}{2}, 1\right\rangle$, so $d_{1}=4, d_{2}=\frac{3}{8}$, and $d_{3}=1$. Therefore,

$$
\mathbf{r}(t)=\left\langle(t-2) e^{t}+3 t+4, \frac{t^{2}}{4}+\frac{\cos 2 t}{8}+2 t+\frac{3}{8},(t+1) \ln (t+1)+t+1\right\rangle
$$

