1 Second Order Ordinary Differential Equations

Definition 1.1 $A n$ ordinary differential equation (ODE) is an equation with derivatives of a given function $y(t)$ of a parameter t. An $O D E$ is second order if y, y^{\prime}, and $y^{\prime \prime}$ appear in the equation but not higher order derivatives. A second order ODE is linear if y, y^{\prime}, and $y^{\prime \prime}$ only appear to the first power.

The general form of a second order linear ODE is

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime} t(t)+g(t) y(t)=f(t) \tag{1}
\end{equation*}
$$

where $p(t), g(t)$, and $f(t)$ are continuous on an interval I. If $f(t)$ is identically 0 , then we say that the ODE is homogeneous. If not, then the equation is nonhomogeneous.

Facts:

1. If (1) is homogeneous and y_{1} and y_{2} are two linearly independent solutions to (1), then ALL solutions to (1) are of the form $c_{1} y_{1}+c_{2} y_{2}$ (where c_{1} and c_{2} are arbitrary real numbers).
2. The following pairs of functions are linearly independent: (a) $\{\sin (a t), \cos (b t)\}$ for all nonzero a and b; (b) $\left\{e^{a t}, e^{b t}\right\}$ for $a \neq b$; (c) $\left\{t^{p}, t^{q}\right\}$ if $p \neq q$.
3. If (1) is nonhomogeneous and y_{p} is a solution to (1) as written (we call this y_{p} a particular solution to (1)), then all solutions to (1) are of the form $y_{p}+y_{h}$, where y_{h} is a solution to (1)'s homogeneous counterpart (the form of this solution is given in Fact 1.).
4. Given (1) holding on an interval I containing 0 and given constants A and B where $y(0)=A$ and $y^{\prime}(0)=B$, we can find a UNIQUE solution to (1), as this information enables us to solve for the c_{1} and c_{2} that we treated as arbitrary in Fact 1.

2 Complex Numbers

Definition 2.1 A complex number is a number z of the form $z=x+i y$ where $i=\sqrt{-1}$ and x and y are real numbers. Geometrically, we think of $x+i y$ as the pair $\langle x, y\rangle$ in \mathbb{R}^{2}. We call x the real part of z, denoted $\operatorname{Re}(z)$, and y the imaginary part of z, denoted $\operatorname{Im}(z)$. The number $\bar{z}=x-i y$ is called the complex conjugate of z. Treated as a vector in $\mathbb{R}^{2}, x+i y$ is completely determined by its modulus (length) $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \cdot \bar{z}}$ and argument θ, which is the counterclockwise angle the vector $\langle x, y\rangle$ forms with the positive x-axis. Notice that $z=|z|(\cos (\theta)+i \sin (\theta))$. Then, because of Euler's formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ (this is proven by taking the Maclaurin series for $e^{i \theta}$ and separating real and imaginary parts), we have $z=|z| e^{i \theta}$. This form of a complex number is generally easier to do multiplication and division with if the arguments are known angles. Otherwise, multiplication is done by FOILing, and a quotient z / w is found by taking $\frac{z}{w}=\frac{z}{w} \cdot \frac{\bar{w}}{\bar{w}}=\frac{z \cdot \bar{w}}{|w|^{2}}$.

We can now state a very simple but beautiful fact:

$$
e^{i \pi}+1=0
$$

Fact: Notice that $e^{i \theta}=e^{i(\theta+2 k \pi)}$ for any integer k
Theorem 2.2 De Moivre's Theorem If $z=r e^{i \theta}=r e^{i(\theta+2 k \pi)}$ (for any integer k, as we stated above), then there are n " nth roots" of z :

$$
z^{1 / n}=r^{1 / n} e^{\frac{i(\theta+2 k \pi)}{n}}=r^{1 / n}\left[\cos \left(\frac{\theta+2 k \pi}{n}\right)+i \sin \left(\frac{\text { thet } a+2 k \pi}{n}\right)\right],
$$

for $k=0,1, \ldots, n-1$.

