1 Algebraic Properties of Matrix Operations

Definition 1.1 If $A = (a_{ij})$ is an $(m \times n)$ matrix, then the **transpose** of A, denoted A^T is the $(n \times m)$ matrix $A^T = (b_{ij})$, where $b_{ij} = a_{ji}$ for all i and j, $1 \le i \le m$ and $1 \le j \le n$. A matrix A is symmetric if $A = A^T$.

Theorem 1.2 [Theorems 8, 9, 10 p.360-362] 1. If A and B are $(m \times n)$ matrices and C is an $(n \times p)$ matrix, then (A + B)C = AC + BC.

2. If A is an $(m \times n)$ matrix and B and C are $(n \times p)$ matrices, then A(B+C) = AB + AC.

3. If r and s are scalars and A is an $m \times n$ matrix, then (r+s)A = rA + sA.

4. If r is a scalar and A and B are $(m \times n)$ matrices, then r(A + B) = rA + rB.

5. If A, B, and C are $(m \times n)$, $(n \times p)$, and $(p \times q)$ matrices, respectively, then (AB)C = A(BC). 6. If r and s are scalars, then r(sA) = (rs)A.

$$7. r(AB) = (rA)B.$$

For 8-10, let A and B be $(m \times n)$ matrices and C be an $(n \times p)$ matrix. 8. $(A+B)^T = A^T + B^T$. 9. $(AC)^T = C^T A^T$. 10. $(A^T)^T = A$.

Definition 1.3 The $(n \times n)$ identity matrix is the matrix

$$I_{n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}; for example, I_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 I_n is thus the matrix with 1's along the main diagonal and 0's elsewhere. For any $(n \times n)$ matrix A, $I_n A = A I_n = A$.

Note 1.4 Given two vectors \mathbf{v} and \mathbf{w} of the same dimension (e.g. both are (1×3) column vectors) thought of as column vectors, note that their dot product can be thought of as the matrix product $\mathbf{v}^T \mathbf{w}$.

Definition 1.5 Given a vector \mathbf{x} in \mathbb{R}^n (n-dimensional space), the Euclidean length (or, Euclidean norm) of \mathbf{x} is $||\mathbf{x}|| = \sqrt{\mathbf{x}^T \mathbf{x}}$.

2 Linear Independence and Nonsingular Matrices

Definition 2.1 Let \mathbf{v}_1 , \mathbf{v}_2 , ..., and \mathbf{v}_n be vectors in \mathbb{R}^m . Let $\mathbf{0}$ denote the vector of this dimension whose components are all 0 (note: this is " θ " in the book). A **linear combination** of these vectors is an expression of the form $a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+a_n\mathbf{v}_n$ where each a_i is a scalar. If the only such linear combination equal to $\mathbf{0}$ is the one where $a_1 = a_2 = \cdots = a_n = 0$, we say the vectors are **linearly independent**; otherwise, they are **linearly dependent**. The set of all linear combinations of these vectors is their **span**. It's a fact that m linearly independent vectors in \mathbb{R}^m must span all of \mathbb{R}^m .

Theorem 2.2 [Theorem 11, p. 374] A collection $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ of vectors in \mathbb{R}^m where p > m MUST be linearly dependent.

Fact 2.3 Let \mathbf{v}_1 , \mathbf{v}_2 , ..., and \mathbf{v}_n be linearly vectors in \mathbb{R}^n whose span is all of \mathbb{R}^n , and let \mathbf{b} be another vector in \mathbb{R}^n . Then, expressing \mathbf{b} as a linear combination $x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n = \mathbf{b}$ is equivalent to row reducing to reduced echelon form the matrix

$$V_b = \begin{bmatrix} | & & | & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n & \mathbf{b} \\ | & & | & | \end{bmatrix}$$

to solve for $x_1, ..., x_n$ just as in Section 4.3. Consequently, if A is the matrix whose ith column is \mathbf{v}_i , and \mathbf{x} is the column vector consisting of the x_i , the matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x} if and only if \mathbf{b} can be expressed as a linear combination of the \mathbf{v}_i . In particular, if we set $\mathbf{b} = \mathbf{0}$, we see that $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is linearly independent if and only if $x_1 = \cdots = x_n = 0$ is the only solution to the system of equations represented by V_b .

Procedure 2.4 To determine whether a collection of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ in \mathbb{R}^m is linearly independent, take the matrix V_b above with $\mathbf{b} = 0$ and row reduce to reduced echelon form. If a matrix $[B|\mathbf{0}]$ is obtained, where $B = I_m$ or B has the form of I_p in the top p rows and additional rows of 0's at the bottom, then the vectors are linearly independent. If not, then, you can solve for x_i as in Fact 2.3 to show linear dependence.

Definition 2.5 An $(n \times n)$ matrix A is **nonsingular** if the only solution to $A\mathbf{x} = \mathbf{0}$ (where **x** and **0** are vectors in \mathbb{R}^n) is $\mathbf{x} = \mathbf{0}$. If A is not nonsingular, then we say A is **singular**.

Theorem 2.6 [Theorem 12, p. 374] If A is an $(n \times n)$ matrix that can be expressed as $[\mathbf{A}_1, ..., \mathbf{A}_n]$, then A is nonsingular if and only if $\{\mathbf{A}_1, ..., \mathbf{A}_n\}$ is a linearly independent set.

Theorem 2.7 [Theorem 13, p. 375] Let A be an $(n \times n)$ matrix. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $(n \times 1)$ column vector \mathbf{b} if and only if A is nonsingular.