1 Algebraic Properties of Matrix Operations

Definition 1.1 If $A=\left(a_{i j}\right)$ is an $(m \times n)$ matrix, then the transpose of A, denoted A^{T} is the $(n \times m)$ matrix $A^{T}=\left(b_{i j}\right)$, where $b_{i j}=a_{j i}$ for all i and $j, 1 \leq i \leq m$ and $1 \leq j \leq n$. A matrix A is symmetric if $A=A^{T}$.

Theorem 1.2 [Theorems 8, 9, 10 p.360-362] 1. If A and B are $(m \times n)$ matrices and C is an $(n \times p)$ matrix, then $(A+B) C=A C+B C$.
2. If A is an $(m \times n)$ matrix and B and C are $(n \times p)$ matrices, then $A(B+C)=A B+A C$.
3. If r and s are scalars and A is an $m \times n$ matrix, then $(r+s) A=r A+s A$.
4. If r is a scalar and A and B are $(m \times n)$ matrices, then $r(A+B)=r A+r B$.
5. If A, B, and C are $(m \times n),(n \times p)$, and $(p \times q)$ matrices, respectively, then $(A B) C=A(B C)$.
6. If r and s are scalars, then $r(s A)=(r s) A$.
7. $r(A B)=(r A) B$.

For 8-10, let A and B be $(m \times n)$ matrices and C be an $(n \times p)$ matrix. 8. $(A+B)^{T}=A^{T}+B^{T}$. 9. $(A C)^{T}=C^{T} A^{T}$.
10. $\left(A^{T}\right)^{T}=A$.

Definition 1.3 The $(n \times n)$ identity matrix is the matrix

$$
I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] ; \text { for example, } I_{5}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

I_{n} is thus the matrix with 1^{\prime} 's along the main diagonal and 0^{\prime} s elsewhere. For any $(n \times n)$ matrix $A, I_{n} A=A I_{n}=A$.

Note 1.4 Given two vectors \mathbf{v} and \mathbf{w} of the same dimension (e.g. both are (1×3) column vectors) thought of as column vectors, note that their dot product can be thought of as the matrix product $\mathbf{v}^{T} \mathbf{w}$.

Definition 1.5 Given a vector \mathbf{x} in \mathbb{R}^{n} (n-dimensional space), the Euclidean length (or, Euclidean norm) of \mathbf{x} is $\|\mathbf{x}\|=\sqrt{\mathbf{x}^{T} \mathbf{x}}$.

2 Linear Independence and Nonsingular Matrices

Definition 2.1 Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots$, and \mathbf{v}_{n} be vectors in \mathbb{R}^{m}. Let $\mathbf{0}$ denote the vector of this dimension whose components are all 0 (note: this is " θ " in the book). A linear combination of these vectors is an expression of the form $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}$ where each a_{i} is a scalar. If the only such linear combination equal to $\mathbf{0}$ is the one where $a_{1}=a_{2}=\cdots=a_{n}=0$, we say the vectors are linearly independent; otherwise, they are linearly dependent. The set of all linear combinations of these vectors is their span. It's a fact that m linearly independent vectors in \mathbb{R}^{m} must span all of \mathbb{R}^{m} 。

Theorem 2.2 [Theorem 11, p. 374] A collection $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of vectors in \mathbb{R}^{m} where $p>m$ MUST be linearly dependent.

Fact 2.3 Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots$, and \mathbf{v}_{n} be linearly vectors in \mathbb{R}^{n} whose span is all of \mathbb{R}^{n}, and let \mathbf{b} be another vector in \mathbb{R}^{n}. Then, expressing \mathbf{b} as a linear combination $x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{b}$ is equivalent to row reducing to reduced echelon form the matrix

$$
V_{b}=\left[\begin{array}{ccc|c}
\mid & & \mid & \mid \\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} & \mathbf{b} \\
\mid & & \mid & \mid
\end{array}\right]
$$

to solve for x_{1}, \ldots, x_{n} just as in Section 4.3. Consequently, if A is the matrix whose ith column is \mathbf{v}_{i}, and \mathbf{x} is the column vector consisting of the x_{i}, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x} if and only if \mathbf{b} can be expressed as a linear combination of the \mathbf{v}_{i}. In particular, if we set $\mathbf{b}=\mathbf{0}$, we see that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent if and only if $x_{1}=\cdots=x_{n}=0$ is the only solution to the system of equations represented by V_{b}.

Procedure 2.4 To determine whether a collection of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{m} is linearly independent, take the matrix V_{b} above with $\mathbf{b}=0$ and row reduce to reduced echelon form. If a matrix $[B \mid \mathbf{0}]$ is obtained, where $B=I_{m}$ or B has the form of I_{p} in the top p rows and additional rows of 0^{\prime} 's at the bottom, then the vectors are linearly independent. If not, then, you can solve for x_{i} as in Fact 2.3 to show linear dependence.

Definition 2.5 $A n(n \times n)$ matrix A is nonsingular if the only solution to $A \mathbf{x}=\mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are vectors in \mathbb{R}^{n}) is $\mathbf{x}=0$. If A is not nonsingular, then we say A is singular.

Theorem 2.6 [Theorem 12, p. 374] If A is an $(n \times n)$ matrix that can be expressed as $\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right]$, then A is nonsingular if and only if $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\}$ is a linearly independent set.

Theorem 2.7 [Theorem 13, p. 375] Let A be an $(n \times n)$ matrix. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $(n \times 1)$ column vector \mathbf{b} if and only if A is nonsingular.

