1 General solutions to homogeneous equations

In this section, we solve

$$y''(t) + p(t)y'(t) + qy(t) = 0$$
(1)

where p and q are scalars.

Consider the **characteristic polynomial** $r^2 + pr + q$. By the quadratic formula, its roots are $r_1 = \frac{-p + \sqrt{p^2 - 4q}}{2}$ and $r_2 = \frac{-p - \sqrt{p^2 - 4q}}{2}$. We have three cases:

Case $\mathbf{\tilde{1}}$: $p^2 - 4q > 0$. In this case, r_1 and r_2 are real numbers and distinct from each other, and the general solution to (1) is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$, where c_1 and c_2 are arbitrary real numbers.

Case 2: $p^2 - 4q = 0$. In this case, $r_1 = r_2 = -p/2$, a real number, and the general solution to (1) is in this case $y = c_1 t e^{r_1 t} + c_2 e^{r_1 t}$, where c_1 and c_2 are arbitrary real numbers.

Case 3: $p^2 - 4q < 0$. In this case, r_1 and r_2 are complex numbers $a \pm ib$ and the general solution to (1) is in this case $y = c_1 e^{at} \cos(bt) + c_2 e^{at} \sin(bt)$, where c_1 and c_2 are arbitrary real numbers.

Definition 1.1 Given a solution $y = c_1 \sin(\omega t) + c_2 \cos(\omega t)$, its **amplitude-phase form** is $y = A \sin(\omega t + \varphi)$, where $A = \sqrt{c_1^2 + c_2^2}$, $\tan(\varphi) = \frac{c_2}{c_2}$ (think of φ as the angle determining the vector $\langle c_1, c_2 \rangle$ in the plane, counterclockwise from the positive x-axis).

Definition 1.2 For a solution y(t), the phase plane of y(t) is the parametric curve $r(t) = \langle y(t), y'(t) \rangle$.

Next we consider another equation, the **Cauchy-Euler Equation**, solved by similar methods:

$$t^{2}y''(t) + aty'(t) + by(t) = 0$$
⁽²⁾

where a and b are real numbers and t > 0.

To solve this kind of equation, we consider a *DIFFERENT* characteristic polynomial $p(x) = x^2 + (a-1)x + b$. We have 3 cases:

Case 1: If p(x) has two distinct real roots r_1 and r_2 , then the general solution is $y = c_1 t^{r_1} + c_2 t^{r_2}$, where c_1 and c_2 are arbitrary real numbers and t > 0.

Case 2: If p(x) has a repeated real root r, then the general solution is $y = c_1 t^r + c_2 t^r \ln(t)$, where c_1 and c_2 are arbitrary real numbers and t > 0.

Case 3: If p(x) has complex roots $\alpha \pm i\beta$, then the general solution is $y = c_1 t^{\alpha} \cos(\beta \ln(t)) + c_2 t^{\alpha} \sin(\beta \ln(t))$, where c_1 and c_2 are arbitrary real numbers and t > 0.

2 General solutions to nonhomogeneous equations

In this section, we wish to solve the equation

$$y''(t) + p(t)y'(t) + qy(t) = f(t)$$
(3)

where p and q are scalars and f(t) is a function. Per Fact 3 on the handout for Section 5.1, we just need to find one particular solution y_p for (3), and in that case, the general solution to (3) is $y = y_p + y_h$ where y_h is the general solution to the homogeneous equation (directions on how to find this given in the previous section of this handout). Generally, we determine y_p by trial and error: we plug in a trial solution with undetermined coefficients (meaning we don't know what they are; we have to solve for them) and determine the values of the coefficients by plugging in the trial solution and its derivatives into (3). Almost always, the trial solutions are:

f(t)	trial solution
degree n polynomial	another degree n polynomial
e^{at}	Ae^{at}
$\sin(bt) \text{ or } \cos(bt)$	$A\sin(bt) + B\cos(bt)$
$p_n(t)e^{at}$	$q_n(t)e^{at}$
$p_n(t)\sin(bt)$ (or $\cos(bt)$)	$q_n(t)\sin(bt) + r_n(t)\cos(bt)$
$e^{at}\sin(bt)$ (or $\cos(bt)$)	$Ae^{at}\sin(bt) + Be^{at}\cos(bt)$
sum of any of above	sum of corresponding trial solutions

where we adopt the shorthand that $p_n(t)$, $q_n(t)$, and $r_n(t)$ denote degree n polynomials.

CAUTION: Sometimes trial solutions end up being solutions to the homogeneous equation. In that case, multiply the trial solution by t and try again.

Remark 2.1 Given values for y(0) and y'(0) (we call these **initial conditions**) and an equation such as (1) and (3) (we call this setup an **initial value problem** or *IVP*), we can find the solution to the *IVP* by finding the general solution to the equation (as described in this handout) and using the given values of y(0) and y'(0) to solve for c_1 and c_2 . There are also corresponding *IVP*'s for the Cauchy-Euler equation (2); in that case, we use y(1) and y'(1).