1 General solutions to homogeneous equations

In this section, we solve

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q y(t)=0 \tag{1}
\end{equation*}
$$

where p and q are scalars.
Consider the characteristic polynomial $r^{2}+p r+q$. By the quadratic formula, its roots are $r_{1}=\frac{-p+\sqrt{p^{2}-4 q}}{2}$ and $r_{2}=\frac{-p-\sqrt{p^{2}-4 q}}{2}$. We have three cases:

Case 1: $p^{2}-4 q>0$. In this case, r_{1} and r_{2} are real numbers and distinct from each other, and the general solution to (1) is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$, where c_{1} and c_{2} are arbitrary real numbers.

Case 2: $p^{2}-4 q=0$. In this case, $r_{1}=r_{2}=-p / 2$, a real number, and the general soluiton to (1) is in this case $y=c_{1} t e^{r_{1} t}+c_{2} e^{r_{1} t}$, where c_{1} and c_{2} are arbitrary real numbers.

Case 3: $p^{2}-4 q<0$. In this case, r_{1} and r_{2} are complex numbers $a \pm i b$ and the general solution to (1) is in this case $y=c_{1} e^{a t} \cos (b t)+c_{2} e^{a t} \sin (b t)$, where c_{1} and c_{2} are arbitrary real numbers.

Definition 1.1 Given a solution $y=c_{1} \sin (\omega t)+c_{2} \cos (\omega t)$, its amplitude-phase form is $y=$ $A \sin (\omega t+\varphi)$, where $A=\sqrt{c_{1}^{2}+c_{2}^{2}}, \tan (\varphi)=\frac{c_{2}}{c_{2}}$ (think of φ as the angle determining the vector $\left\langle c_{1}, c_{2}\right\rangle$ in the plane, counterclockwise from the positive x-axis).

Definition 1.2 For a solution $y(t)$, the phase plane of $y(t)$ is the parametric curve $r(t)=$ $\left\langle y(t), y^{\prime}(t)\right\rangle$.

Next we consider another equation, the Cauchy-Euler Equation, solved by similar methods:

$$
\begin{equation*}
t^{2} y^{\prime \prime}(t)+a t y^{\prime}(t)+b y(t)=0 \tag{2}
\end{equation*}
$$

where a and b are real numbers and $t>0$.
To solve this kind of equation, we consider a DIFFERENT characteristic polynomial $p(x)=$ $x^{2}+(a-1) x+b$. We have 3 cases:

Case 1: If $p(x)$ has two distinct real roots r_{1} and r_{2}, then the general solution is $y=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}$, where c_{1} and c_{2} are arbitrary real numbers and $t>0$.

Case 2: If $p(x)$ has a repeated real root r, then the general solution is $y=c_{1} t^{r}+c_{2} t^{r} \ln (t)$, where c_{1} and c_{2} are arbitrary real numbers and $t>0$.

Case 3: If $p(x)$ has complex roots $\alpha \pm i \beta$, then the general solution is $y=c_{1} t^{\alpha} \cos (\beta \ln (t))+$ $c_{2} t^{\alpha} \sin (\beta \ln (t))$, where c_{1} and c_{2} are arbitrary real numbers and $t>0$.

2 General solutions to nonhomogeneous equations

In this section, we wish to solve the equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q y(t)=f(t) \tag{3}
\end{equation*}
$$

where p and q are scalars and $f(t)$ is a function. Per Fact 3 on the handout for Section 5.1, we just need to find one particular solution y_{p} for (3), and in that case, the general solution to (3) is $y=y_{p}+y_{h}$ where y_{h} is the general solution to the homogeneous equation (directions on how to find this given in the previous section of this handout). Generally, we determine y_{p} by trial and error: we plug in a trial solution with undetermined coefficients (meaning we don't know what they are; we have to solve for them) and determine the values of the coefficients by plugging in the trial solution and its derivatives into (3). Almost always, the trial solutions are:

$\mathbf{f}(\mathbf{t})$	trial solution
degree n polynomial	another degree n polynomial
$e^{a t}$	$A e^{a t}$
$\sin (b t)$ or $\cos (b t)$	$A \sin (b t)+B \cos (b t)$
$p_{n}(t) e^{a t}$	$q_{n}(t) e^{a t}$
$p_{n}(t) \sin (b t)($ or $\cos (b t))$	$q_{n}(t) \sin (b t)+r_{n}(t) \cos (b t)$
$e^{a t} \sin (b t)($ or $\cos (b t))$	$A e^{a t} \sin (b t)+B e^{a t} \cos (b t)$
sum of any of above	sum of corresponding trial solutions

where we adopt the shorthand that $p_{n}(t), q_{n}(t)$, and $r_{n}(t)$ denote degree n polynomials.
CAUTION: Sometimes trial solutions end up being solutions to the homogeneous equation. In that case, multiply the trial solution by t and try again.

Remark 2.1 Given values for $y(0)$ and $y^{\prime}(0)$ (we call these initial conditions) and an equation such as (1) and (3) (we call this setup an initial value problem or IVP), we can find the solution to the IVP by finding the general solution to the equation (as described in this handout) and using the given values of $y(0)$ and $y^{\prime}(0)$ to solve for c_{1} and c_{2}. There are also corresponding IVP's for the Cauchy-Euler equation (2); in that case, we use $y(1)$ and $y^{\prime}(1)$.

