\qquad
Quiz 9 - Take Home (10 pts) Recitation Time: \qquad

SHOW ALL WORK!!! Unsupported answers might not receive full credit. Furthermore, please give me EXACT answers.

Problem 1 [4 pts$]$ Let D be the solid region bounded between the upper half of the ellipsoid $\frac{x^{2}}{9}+\frac{y^{2}}{16}+\frac{z^{2}}{4}=1$ and the plane $z=0$.
(a). [0.5 pts] Find a transformation $T_{1}: S \rightarrow D$ with $(u, v, w) \mapsto(x, y, z)$ where S is the upper half of the unit ball centered at the origin.
(b). [0.5 pts] As we learned in Section 14.5, S may be expressed in spherical coordinates via $u=\rho \sin \varphi \cos \theta, v=\rho \sin \varphi \sin \theta$, and $w=\rho \cos \varphi$. This describes a transformation $T_{2}: R \rightarrow S$ from a region R in (ρ, φ, θ) 3D-space into S. Give a description R in (ρ, φ, θ) 3D-space.
(c). [0.5 pts] Use the previous parts to express explicitly the transformation $T_{1} \circ T_{2}: R \rightarrow D$, $(\rho, \varphi, \theta) \mapsto(x, y, z)$.
(d). [1.5 pts] Find the Jacobian for the transformation $T_{1} \circ T_{2}$. (Your final answer should be relatively simple after using the Pythagorean trig identity.)
(e.) $[1 \mathrm{pt}]$ Find $\iiint_{D} z d V$.

Problem 2 [5 pts] Consider the vector field $\mathbf{F}=\langle y-2 x, 2 x-y\rangle$ and the curve C given by $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t\rangle, 0 \leq t \leq 2 \pi$.
(a). [2 pts] Sketch C (indicating orientation) and 12 vectors in the vector field for \mathbf{F}. Include at least 4 vectors with tails at points on C and try to space out your points (x, y) so that arrows $\mathbf{F}(x, y)$ don't land right on top of each other so much.

(b). [1 pt] Considering what vectors you plotted for your chosen points on C, make a prediction as to whether the flux will be positive negative, or zero, and explain your prediction using the intuitive meaning of flux.
(c). [2 pts] Compute the flux of \mathbf{F} on C.

Problem $3[1 \mathrm{pt}]$ Suppose that $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the potential function for a vector field \mathbf{F}.
(a). [0.5pts] State the simple but important fact about the vectors $\mathbf{F}(x, y)$ evaluated at points (x, y) on the level curves for g.
(b). [0.5pts] Consider one level curve C given by $g(x, y)=D$. Based on the intuitive definition of circulation, what do you think the circulation of \mathbf{F} on C is?

