\qquad
Quiz 2 - Take Home (10 pts)
Recitation Time: \qquad

SHOW ALL WORK!!! Unsupported answers might not receive full credit.
Problem 1 [0.5 pts] State the formula for $\frac{d}{d t}[f(t) \mathbf{r}(t)]$ where f is a scalar-valued function and \mathbf{r} is a vector-valued function. Do not write $\mathbf{r}(t)$ as a pair of components $\mathbf{r}(t)=$ $\langle x(t), y(t)\rangle$ and distribute $f(t)$.
$\underline{\text { Problem } 2}[1.5 \mathrm{pts}]$ Evaluate the limit $\lim _{t \rightarrow 0}\left(\frac{1-\cos t}{t} \mathbf{i}-\frac{e^{2 t}-t-1}{t} \mathbf{j}+\frac{\cos t+t^{2} / 2-1}{t^{2}} \mathbf{k}\right)$

Problem 3 [4 pts] Consider the curve $\mathbf{r}(t)=\langle 2 \sin 2 t, 3 t, 2 \cos 2 t\rangle$ for $0 \leq t \leq 4$.
(a). [2 pts] Find a formula for the arc length for the arc length $s(t)$ in general.
(b). [2 pts] State whether the curve is parametrized by arc length and how you know [0.5 $\mathrm{pts}]$. If it is not parametrized by arc length, find another description of the curve that uses arc length as a parameter [1.5 pts].

Problem 4 [4 pts] Suppose that the acceleration of a projectile is given by the vectorvalued function $\mathbf{a}(t)=\left\langle t e^{t}, \sin ^{2} t, \frac{1}{t+1}\right\rangle$ for $t \geq 0$, and suppose the initial position and velocity are given by $\mathbf{r}(0)=\left\langle 2, \frac{1}{2}, 1\right\rangle$ and $\mathbf{v}(0)=\langle 2,2,2$,$\rangle , respectively. Find the value of$ the position function \mathbf{r} for all values of $t \geq 0$, i.e. find $\mathbf{r}(t)$. Show your work. Citing an online integral calculator or a table of integrals will award you no credit for the evaluation of the integral(s).

