1 Fourier series

Definition 1.1 Let f be a piecewise continuous function on the interval $[-L, L]$. The Fourier series of f is given by

$$
S_{\infty} f(x):=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right\}
$$

where a_{n} and b_{n} are given by the Euler formulas

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \text { for } n=0,1,2, \ldots
$$

and

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \text { for } n=1,2,3, \ldots
$$

Definition 1.2 Given a piecewise continuous function f on the interval $[0, L]$, the Fourier cosine series of f is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right),
$$

where for each $n \geq 0$

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

and the Fourier sine series is

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right),
$$

where for each $n \geq 1$

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

2 The Heat Equation

2.1 Insulated ends at $0^{\circ} \mathrm{C}$, no external heat

For the heat-flow problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
u(0, t)=u(L, t)=0, t>0 \\
u(x, 0)=f(x), 0<x<L
\end{gathered}
$$

the solution is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-\beta(n \pi / L)^{2} t} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{2}
\end{equation*}
$$

is the Fourier sine series for $u(x, 0)$

2.2 Zero net heat flow out the ends, no external heat

For the heat-flow problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
& \frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0, t>0 \\
& u(x, 0)=f(x), 0<x<L
\end{aligned}
$$

the solution is

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\beta(n \pi / L)^{2} t} \cos \left(\frac{n \pi x}{L}\right)
$$

to the original I-BVP, where $a_{n}=\frac{2}{L} \int_{0}^{L} u(x, 0) \cos \left(\frac{n \pi x}{L}\right) d x$, i.e. we compute the Fourier cosine series for $u(x, 0)$.

2.3 Wire ends at different temperatures, no external heat

For the heat-flow problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
u(0, t)=U_{1}, u(L, t)=U_{2}, t>0 \\
u(x, 0)=f(x), 0<x<L
\end{gathered}
$$

, where U_{1} and U_{2} are both constants (not both 0), the solution is

$$
u(x, t)=v(x)+\sum_{n=1}^{\infty} c_{n} e^{-\beta(n \pi / L)^{2} t} \sin \left(\frac{n \pi x}{L}\right)
$$

where $v(x)=U_{1}+\frac{U_{2}-U_{1}}{L} x$ and the c_{n} are the Fourier sine coefficients for $w(x, 0):=u(x, 0)-v(x)$.

2.4 Wire ends at different temperatures, with external heat

For the heat-flow problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}+P(x), 0<x<L, t>0 \\
u(0, t)=U_{1}, u(L, t)=U_{2}, t>0 \\
u(x, 0)=f(x), 0<x<L
\end{gathered}
$$

, where U_{1} and U_{2} are both constants (not both 0) and $P(x)$ is the external heat source, the solution is

$$
u(x, t)=v(x)+\sum_{n=1}^{\infty} c_{n} e^{-\beta(n \pi / L)^{2} t} \sin \left(\frac{n \pi x}{L}\right),
$$

where

$$
v(x)=\left[U_{2}-U_{1}+\int_{0}^{L}\left(\int_{0}^{z} \frac{1}{\beta} P(s) d s\right) d z\right] \frac{x}{L}+U_{1}-\int_{0}^{x}\left(\int_{0}^{z} \frac{1}{\beta} P(s) d s\right) d z
$$

and the c_{n} are the Fourier sine coefficients for $w(x, 0):=u(x, 0)-v(x)$.

3 The wave equation

3.1 Basic scenario

For the vibrating string problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
u(0, t)=u(L, t)=0, t>0 \\
u(x, 0)=f(x), 0<x<L \\
\frac{\partial u}{\partial t}(x, 0)=g(x), 0<x<L
\end{gathered}
$$

the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi \alpha}{L} t\right) \sin \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi \alpha}{L} t\right) \sin \left(\frac{n \pi x}{L}\right)
$$

where

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{3}
\end{equation*}
$$

is the Fourier sine series for $f(x)=u(x, 0)$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi \alpha}{L}\right) \sin \left(\frac{n \pi x}{L}\right) \tag{4}
\end{equation*}
$$

is the Fourier sine series for $\frac{\partial u}{\partial t}(x, 0)=g(x)$.

3.2 String of infinite length

For the vibrating string problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}},-\infty<x<-\infty, t>0 \\
u(x, 0)=f(x),-\infty<x<-\infty \\
\frac{\partial u}{\partial t}(x, 0)=g(x),-\infty<x<-\infty
\end{gathered}
$$

the solution is

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[f(x+\alpha t)+f(x-\alpha t)]+\frac{1}{2 \alpha} \int_{x-\alpha t}^{x+\alpha t} g(s) d s \tag{5}
\end{equation*}
$$

