1 More general heat equation scenarios

We're still modelling heat flow on a wire, but we change the hypotheses on the ends of the wire; they will not necessarily be at $0^{\circ} \mathrm{C}$ at all times.

Scenario 1: Zero net heat flow in and out the ends of the wire, i.e. $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(L, t)=0$ for all $t>0$. Consequently, using separation of variables with $u(x, t)=X(x) T(t)$, we get $X^{\prime}(0)=$ $X^{\prime}(L)=0$, getting us solutions $X_{n}(x)=a_{n} \cos \left(\frac{n \pi x}{L}\right)$ to the ODE with $X(x)$ and thus a formal series solution

$$
u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\beta(n \pi / L)^{2} t} \cos \left(\frac{n \pi x}{L}\right)
$$

to the original I-BVP, where $a_{n}=\frac{2}{L} \int_{0}^{L} u(x, 0) \cos \left(\frac{n \pi x}{L}\right) d x$.
Thus, the a_{n} above are derived from the Fourier cosine series for $u(x, 0)$.
Scenario 2: $u(0, t)=U_{1}$ and $u(L, t)=U_{2}$, where U_{1} and U_{2} are both constants, not both 0 ; in this case, we say the heat flow problem is nonhomogeneous. In this case, we have an allowed assumption:

Allowed assumption: When given nonhomogeneous boundary conditions, we may decompose $u(x, t)$ as $u(x, t)=v(x)+w(x, t)$ where $v(0)=U_{1}, v(L)=U_{2}$, and w and all its partial derivatives tend to 0 as $t \rightarrow \infty$. We call v the steady-state solution and w the transient solution.

The significance of this assumption is that $w(x, t)$ then satisfies homogeneous boundary conditions, allowing us to reduce to the homogeneous case with a little bit of work. When $\frac{\partial u}{\partial t}=$ $\beta \frac{\partial^{2} u}{\partial x^{2}}$, we have $\frac{\partial w}{\partial t}=\beta v^{\prime \prime}(x)+\beta \frac{\partial^{2} w}{\partial x^{2}}$. Since the partial derivatives of w go to 0 as $t \rightarrow \infty$, we have $v^{\prime \prime}(x)=0$, meaning by the boundary conditions on v that $v(x)=U_{1}+\frac{U_{2}-U_{1}}{L} x$. Thus, $w(x, 0)=u(x, 0)-v(x)$. This means we just have to find the Fourier sine series of $w(x, 0)$ (with coefficients $\left.c_{n}\right)$ to get the full formal solution

$$
u(x, t)=v(x)+\sum_{n=1}^{\infty} c_{n} e^{-\beta(n \pi / L)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
$$

Again, the c_{n} are the coefficients from the Fourier sine series for $w(x, 0)$.
Scenario 3: There's also an external heat source present that's independent of time, given by $P(x)$. In this case, the heat equation becomes $\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}+P(x)$, and instead of $v^{\prime \prime}(x)=0$ as in the immediately preceding paragraph, we have $v^{\prime \prime}(x)=-\frac{1}{\beta} P(x)$ (note that we still have $v(0)=U_{1}$ and $v(L)=U_{2}$; recall that we had by definition $u(0, t)=U_{1}$ and $\left.u(L, t)=U_{2}\right)$, so then

$$
v(x)=\left[U_{2}-U_{1}+\int_{0}^{L}\left(\int_{0}^{z} \frac{1}{\beta} P(s) d s\right) d z\right] \frac{x}{L}+U_{1}-\int_{0}^{x}\left(\int_{0}^{z} \frac{1}{\beta} P(s) d s\right) d z
$$

This weird formula is derived on pages 520 and 521 of your textbook. From there, one proceeds just as in Scenario 2 (just with this different $v(x)$).

2 The wave equation

For the vibrating string problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
u(0, t)=u(L, t)=0, t>0 \\
u(x, 0)=f(x), 0<x<L \\
\frac{\partial u}{\partial t}(x, 0)=g(x), 0<x<L
\end{gathered}
$$

the solution is

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi \alpha}{L} t\right) \sin \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi \alpha}{L} t\right) \sin \left(\frac{n \pi x}{L}\right),
$$

where

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{1}
\end{equation*}
$$

is the Fourier sine series for $f(x)=u(x, 0)$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi \alpha}{L}\right) \sin \left(\frac{n \pi x}{L}\right) \tag{2}
\end{equation*}
$$

is the Fourier sine series for $\frac{\partial u}{\partial t}(x, 0)=g(x)$.
Remark 2.1 Notice that each mode $\left[a_{n} \cos \left(\frac{n \pi \alpha}{L} t\right)+b_{n} \sin \left(\frac{n \pi \alpha}{L} t\right)\right] \sin \left(\frac{n \pi x}{L}\right)$ represents a family of waves on $[0, L]$ with amplitudes varying with choice of t. However, with each choice of t, at the point $x=L / n$ (and some other points), since $\sin (n \pi x / L)=0$, the point stays fixed for all t; we call these points nodes.

2.1 New scenario: with time dependent forcing

We consider the wave equation with a time-dependent forcing term $h(x, t)$ and obtain a new equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}+h(x, t) . \tag{3}
\end{equation*}
$$

We suppose that we can find decompositions $u(x, t)=\sum_{n=1}^{\infty} u_{n}(t) \sin \left(\frac{n \pi x}{L}\right)$ and $h(x, t)=\sum_{n=1}^{\infty} h_{n}(t) \sin \left(\frac{n \pi x}{L}\right)$, where the $u_{n}(t)$ are to be found by solving the ODE's below and the $h_{n}(t)$ are given by $h_{n}(t)=$ $\frac{2}{L} \int_{0}^{L} h(x, t) \sin \left(\frac{n \pi x}{L}\right) d x$. Then, (1) becomes

$$
\sum_{n=1}^{\infty}\left[u_{n}^{\prime \prime}(t)+\left(\frac{n \pi \alpha}{L}\right)^{2} u_{n}(t)\right] \sin \left(\frac{n \pi x}{L}\right)=\sum_{n=1}^{\infty} h_{n}(t) \sin \left(\frac{n \pi x}{L}\right),
$$

meaning by comparing terms we have for each n

$$
\begin{equation*}
u_{n}^{\prime \prime}(t)+\left(\frac{n \pi \alpha}{L}\right)^{2} u_{n}(t)=h_{n}(t) \tag{4}
\end{equation*}
$$

By using variation of parameters on (2) (don't worry about what that means since you didn't learn it), we get

$$
u_{n}(t)=a_{n} \cos \left(\frac{n \pi \alpha}{L} t\right)+b_{n} \sin \left(\frac{n \pi \alpha}{L} t\right)+\frac{L}{n \pi \alpha} \int_{0}^{t} h_{n}(s) \sin \left(\frac{n \pi \alpha}{L}(t-s)\right) d s
$$

where a_{n} and b_{n} are chosen such that $u(x, 0)=f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right)$ and $\frac{\partial u}{\partial t}(x, 0)=g(x)=$ $\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi \alpha}{L}\right) \sin \left(\frac{n \pi x}{L}\right)$.

2.2 d'Alembert's solution to the wave equation

We now deal with the scenario that our string has infinite length. Using the change of variables $\psi=x+\alpha t$ and $\eta=x-\alpha t$, since then $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial \psi^{2}}+2 \frac{\partial^{2} u}{\partial \psi \partial \eta}+\frac{\partial^{2} u}{\partial \eta^{2}}$ and $\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2}\left(\frac{\partial^{2} u}{\partial \psi^{2}}-2 \frac{\partial^{2} u}{\partial \psi \partial \eta}+\frac{\partial^{2} u}{\partial \eta^{2}}\right)$, we see the wave equation becomes $\frac{\partial^{2} u}{\partial \psi \partial \eta}=0$, so then $u(\psi, \eta)=A(\psi)+B(\eta)$ for some functions A and B that are twice differentiable and to be determined.
Finding A and B such that $u(x, t)=A(x+\alpha t)+B(x-\alpha t)$:
We first notice that $u(x, 0)=f(x)$ becomes $(*) \quad A(x)+B(x)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=g(x)$ becomes $\alpha A^{\prime}(x)-\alpha B^{\prime}(x)=g(x)$, so then by integrating $(* *) \quad A(x)-B(x)=\frac{1}{\alpha} \int_{x_{0}}^{x} g(s) d s+C$, where x_{0} and C are arbitrary constants. By taking linear combinations, we have $A(x)=(1 / 2) f(x)+$ $\frac{1}{2 \alpha} \int_{x_{0}}^{x} g(s) d s+C / 2$ and $B(x)=1 / 2 f(x)-\frac{1}{2 \alpha} \int_{x_{0}}^{x} g(s) d s-C / 2$. Thus, we have

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[f(x+\alpha t)+f(x-\alpha t)]+\frac{1}{2 \alpha} \int_{x-\alpha t}^{x+\alpha t} g(s) d s \tag{5}
\end{equation*}
$$

The above centered equation is d'Alembert's solution. KNOW THIS.

2.3 Traveling waves

Let h be a function on the real numbers, represented by a wave graphically (trig function or trigonometric series). For each $t, h(x+\alpha t)$ represents a function in x, and its graph is $h(x)$ shifted left by α. Letting $t \rightarrow \infty$, the wave goes further and further left, and we say $h(x+\alpha t)$ is a traveling wave moving to the left with speed α. Similarly, $h(x-\alpha t)$ is a traveling wave moving right with speed α. Thus, in our solution (3) above, $u(x, t)$ is the sum of the waves (1/2)f(x+ \boldsymbol{f}) and $(1 / 2) f(x-\alpha t)$; also, notice, that the waves are superimposed at time $t=0$ and move away from each other with speed 2α as t increases.

