
Sections 6.5-6.6: More general Heat Equation and Wave Equation scenarios Reeve Garrett

1 More general heat equation scenarios

We’re still modelling heat flow on a wire, but we change the hypotheses on the ends of the wire;
they will not necessarily be at 0◦C at all times.

Scenario 1: Zero net heat flow in and out the ends of the wire, i.e. ∂u
∂x(0, t) = ∂u

∂x(L, t) = 0 for
all t > 0. Consequently, using separation of variables with u(x, t) = X(x)T (t), we get X ′(0) =
X ′(L) = 0, getting us solutions Xn(x) = an cos

(
nπx
L

)
to the ODE with X(x) and thus a formal

series solution

u(x, t) =
a0
2

+
∞∑
n=1

ane
−β(nπ/L)2t cos

(nπx
L

)
to the original I-BVP, where an =

2

L

∫ L

0
u(x, 0) cos

(nπx
L

)
dx.

Thus, the an above are derived from the Fourier cosine series for u(x, 0).

Scenario 2: u(0, t) = U1 and u(L, t) = U2, where U1 and U2 are both constants, not both 0; in
this case, we say the heat flow problem is nonhomogeneous. In this case, we have an allowed
assumption:

Allowed assumption: When given nonhomogeneous boundary conditions, we may decompose
u(x, t) as u(x, t) = v(x) +w(x, t) where v(0) = U1, v(L) = U2, and w and all its partial derivatives
tend to 0 as t→∞. We call v the steady-state solution and w the transient solution.

The significance of this assumption is that w(x, t) then satisfies homogeneous boundary
conditions, allowing us to reduce to the homogeneous case with a little bit of work. When ∂u

∂t =

β ∂
2u
∂x2

, we have ∂w
∂t = βv′′(x) + β ∂

2w
∂x2

. Since the partial derivatives of w go to 0 as t → ∞, we

have v′′(x) = 0, meaning by the boundary conditions on v that v(x) = U1 + U2−U1
L x. Thus,

w(x, 0) = u(x, 0) − v(x). This means we just have to find the Fourier sine series of w(x, 0) (with
coefficients cn) to get the full formal solution

u(x, t) = v(x) +
∞∑
n=1

cne
−β(nπ/L)2t sin

(nπx
L

)
.

Again, the cn are the coefficients from the Fourier sine series for w(x, 0).

Scenario 3: There’s also an external heat source present that’s independent of time, given by
P (x). In this case, the heat equation becomes ∂u

∂t = β ∂
2u
∂x2

+ P (x), and instead of v′′(x) = 0 as in
the immediately preceding paragraph, we have v′′(x) = − 1

βP (x) (note that we still have v(0) = U1

and v(L) = U2; recall that we had by definition u(0, t) = U1 and u(L, t) = U2), so then

v(x) =

[
U2 − U1 +

∫ L

0

(∫ z

0

1

β
P (s)ds

)
dz

]
x

L
+ U1 −

∫ x

0

(∫ z

0

1

β
P (s)ds

)
dz.

This weird formula is derived on pages 520 and 521 of your textbook. From there, one proceeds
just as in Scenario 2 (just with this different v(x)).

2 The wave equation

For the vibrating string problem
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∂2u
∂t2

= α2 ∂2u
∂x2

, 0 < x < L, t > 0
u(0, t) = u(L, t) = 0, t > 0
u(x, 0) = f(x), 0 < x < L
∂u
∂t (x, 0) = g(x), 0 < x < L

the solution is

u(x, t) =
∞∑
n=1

an cos
(nπα
L

t
)

sin
(nπx
L

)
+
∞∑
n=1

bn sin
(nπα
L

t
)

sin
(nπx
L

)
,

where
∞∑
n=1

an sin
(nπx
L

)
(1)

is the Fourier sine series for f(x) = u(x, 0) and

∞∑
n=1

bn

(nπα
L

)
sin
(nπx
L

)
(2)

is the Fourier sine series for ∂u
∂t (x, 0) = g(x).

Remark 2.1 Notice that each mode
[
an cos

(
nπα
L t
)

+ bn sin
(
nπα
L t
)]

sin
(
nπx
L

)
represents a family of

waves on [0, L] with amplitudes varying with choice of t. However, with each choice of t, at the
point x = L/n (and some other points), since sin(nπx/L) = 0, the point stays fixed for all t; we
call these points nodes.

2.1 New scenario: with time dependent forcing

We consider the wave equation with a time-dependent forcing term h(x, t) and obtain a new equation

∂2u

∂t2
= α2∂

2u

∂x2
+ h(x, t). (3)

We suppose that we can find decompositions u(x, t) =
∑∞

n=1 un(t) sin
(
nπx
L

)
and h(x, t) =

∑∞
n=1 hn(t) sin

(
nπx
L

)
,

where the un(t) are to be found by solving the ODE’s below and the hn(t) are given by hn(t) =
2
L

∫ L
0 h(x, t) sin

(
nπx
L

)
dx. Then, (1) becomes

∞∑
n=1

[
u′′n(t) +

(nπα
L

)2
un(t)

]
sin
(nπx
L

)
=
∞∑
n=1

hn(t) sin
(nπx
L

)
,

meaning by comparing terms we have for each n

u′′n(t) +
(nπα
L

)2
un(t) = hn(t). (4)

By using variation of parameters on (2) (don’t worry about what that means since you didn’t learn
it), we get

un(t) = an cos
(nπα
L

t
)

+ bn sin
(nπα
L

t
)

+
L

nπα

∫ t

0
hn(s) sin

(nπα
L

(t− s)
)
ds,

where an and bn are chosen such that u(x, 0) = f(x) =
∑∞

n=1 an sin
(
nπx
L

)
and ∂u

∂t (x, 0) = g(x) =∑∞
n=1 bn

(
nπα
L

)
sin
(
nπx
L

)
.
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2.2 d’Alembert’s solution to the wave equation

We now deal with the scenario that our string has infinite length. Using the change of variables

ψ = x+αt and η = x−αt, since then ∂2u
∂x2

= ∂2u
∂ψ2 +2 ∂2u

∂ψ∂η + ∂2u
∂η2

and ∂2u
∂t2

= α2
(
∂2u
∂ψ2 − 2 ∂2u

∂ψ∂η + ∂2u
∂η2

)
,

we see the wave equation becomes ∂2u
∂ψ∂η = 0, so then u(ψ, η) = A(ψ) + B(η) for some functions A

and B that are twice differentiable and to be determined.
Finding A and B such that u(x, t) = A(x+ αt) +B(x− αt):

We first notice that u(x, 0) = f(x) becomes (∗) A(x) + B(x) = f(x) and ∂u
∂t (x, 0) = g(x)

becomes αA′(x) − αB′(x) = g(x), so then by integrating (∗∗) A(x) − B(x) = 1
α

∫ x
x0
g(s)ds + C,

where x0 and C are arbitrary constants. By taking linear combinations, we have A(x) = (1/2)f(x)+
1
2α

∫ x
x0
g(s)ds+ C/2 and B(x) = 1/2f(x)− 1

2α

∫ x
x0
g(s)ds− C/2. Thus, we have

u(x, t) =
1

2
[f(x+ αt) + f(x− αt)] +

1

2α

∫ x+αt

x−αt
g(s)ds (5)

The above centered equation is d’Alembert’s solution. KNOW THIS.

2.3 Traveling waves

Let h be a function on the real numbers, represented by a wave graphically (trig function or
trigonometric series). For each t, h(x+αt) represents a function in x, and its graph is h(x) shifted
left by αt. Letting t → ∞, the wave goes further and further left, and we say h(x + αt) is a
traveling wave moving to the left with speed α. Similarly, h(x− αt) is a traveling wave moving
right with speed α. Thus, in our solution (3) above, u(x, t) is the sum of the waves (1/2)f(x+ αt)
and (1/2)f(x − αt); also, notice, that the waves are superimposed at time t = 0 and move away
from each other with speed 2α as t increases.
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