1 Fourier sine and cosine series

Definition 1.1 Given a function f defined on $(0, L)$, the odd 2L-periodic extension is

$$
f_{o}(x)= \begin{cases}f(x) & \text { if } 0<x<L \\ -f(-x) & \text { if }-L<x<0\end{cases}
$$

and the even 2L-periodic extension is

$$
f_{e}(x)= \begin{cases}f(x) & \text { if } 0<x<L \\ f(-x) & \text { if }-L<x<0\end{cases}
$$

Definition 1.2 Given a piecewise continuous function f on the interval $[0, L]$, the Fourier cosine series of f is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right),
$$

where for each $n \geq 0$

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x,
$$

and the Fourier sine series is

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right),
$$

where for each $n \geq 1$

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Note that these are, respectively, the Fourier series expansions for f_{e} and f_{o}.
The relevance of this to the heat-flow problem on a wire with $0^{\circ} \mathrm{C}$ ends is that you just need to find the Fourier sine series for $u(x, 0)=f(x)$, and its coefficients c_{n} will be the coefficients in the series solution for $u(x, t)$. Therefore, for the heat-flow problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\beta \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \\
u(0, t)=u(L, t)=0, t>0 \\
u(x, 0)=f(x), 0<x<L
\end{gathered}
$$

the solution is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-\beta(n \pi / L)^{2} t} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{2}
\end{equation*}
$$

is the Fourier sine series for $u(x, 0)$

