
Section 5.4: Oscillator equations and circuits Reeve Garrett

1 Oscillator equations

We consider a block with mass m suspended from a spring and its motion deviating from equi-
librium position, which is the position the spring is stretched to by the object and gravity. The
(vertical) position is given by y(t) where y = 0 at equilibrium, y < 0 when the spring is compressed,
and y > 0 when the spring is stretched.

Newton’s law: my′′ = Fs + Fd + Fext, where

(a) Fs = −ky is the restoring force of the spring and k is solved for by Hooke’s Law:

mg = k · [distance spring is stretched by gravity and the object],

where g = 9.8 m
s

(b) Fd = −cy′ is the damping force and c is a given damping constant

(c) Fext is the sum of the external forces; they depend only on t.

Taking the resulting equation and dividing by m, we get our main equation

y′′ + by′ + ω2
0y = f(t), (1)

where b = c
m , ω2

0 = k
m , and f(t) = Fext

m .
If c = b = 0, then the motion is undamped; otherwise, the motion is damped. If Fext = f = 0,

then we have free oscillations; otherwise, we have forced oscillations.

1.1 Notes on forced undamped oscillations

We generally assume Fext = F0 cos(ωt) or Fext = F0 sin(ωt), where F0 and ω are constants.

1. If ω 6= ω0, y(0) = y′(0) = 0, and Fext = F0 cos(ωt), then the solution to (1) is

y =

[
2F0

mω2
0 −mω2

sin

(
1

2
(ω0 − ω)t

)]{
sin

(
ω0 + ω

2
t

)}
.

If ω ≈ ω0, beats occur, meaning the larger wave in [ ] encloses the smaller wave in { }. This
is also called amplitude modulation in circuits.

2. If ω = ω0 and Fext = F0 cos(ωt), we’re in the “trial particular solution fails” case, so the
general solution is

y = c1 sin(ω0t) + c2 cos(ω0t) +

[
F0

2mω0
t sin(ω0t)

]
,

where the portion in [ ] contributes resonance, meaning the amplitude of that portion
increases with t.
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1.2 Notes on damped oscillations

First, note that the characteristic polynomial has roots r1, r2 =
−b±
√

b2−4ω2
0

2 .

1. If b2 > 4ω2
0, then yh = c1e

r1t + c2e
r2t, where r1 < 0 and r2 < 0, so we have overdamping,

meaning that the damping suppresses ALL oscillations.

2. If b2 = 4ω2
0, we have a double root r1 = −b/2, so yh = c1e

r1t + c2te
r1t, where r1 < 0, meaning

we have critical damping (the damping suppresses MOST oscillations).

3. If b2 < 4ω2
0, we have complex roots r1, r2 = − b

2 ± ai, and yh = e−bt/2(c1 sin(at) + c2 cos(at),
so underdamping occurs, meaning the solutions are oscillatory with decaying amplitudes.

4. In the forced (meaning nonhomogeneous) case when ω 6= ω0, the solution is y = yh +yp where
yh is as in 1.-3. immediately above and yp = A sin(ωt) + B cos(ωt). Since yh → 0 as t→∞,
yh is called the transient solution, and since consequently y → yp as t → ∞, yp is called
the steady state solution.

2 Electrical circuits

Given a circuit with

1. resistor with resistance of R ohms,

2. capacitor with capacitance of C farads,

3. inductor coil with inductance of L henries, and

4. voltage source (i.e. a battery; also called applied voltage) of E(t) volts,

we generally are tasked to find the current of I(t) amperes or the charge of Q(t) coulombs; these
are related by I(t) = dQ

dt . Typically, this takes the form of the initial value problem

LI ′′ + RI ′ +
1

C
I = E′(t) (2)

with initial conditions Q(0) = 0 and I(0) = 0, and we must deduce I ′(0) = E(0)
L . This is derived

from the corresponding initial value problem (with same initial conditions) for the charge, given by
Kirchhoff’s voltage law:

LQ′′ + RQ′ +
1

C
Q = E(t). (3)

These problems are solved just like oscillator problems otherwise.
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