1 Oscillator equations

We consider a block with mass m suspended from a spring and its motion deviating from equilibrium position, which is the position the spring is stretched to by the object and gravity. The (vertical) position is given by $y(t)$ where $y=0$ at equilibrium, $y<0$ when the spring is compressed, and $y>0$ when the spring is stretched.

Newton's law: $m y^{\prime \prime}=F_{s}+F_{d}+F_{\text {ext }}$, where
(a) $F_{s}=-k y$ is the restoring force of the spring and k is solved for by Hooke's Law:
$m g=k \cdot[$ distance spring is stretched by gravity and the object],
where $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}}$
(b) $F_{d}=-c y^{\prime}$ is the damping force and c is a given damping constant
(c) $F_{\text {ext }}$ is the sum of the external forces; they depend only on t.

Taking the resulting equation and dividing by m, we get our main equation

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+\omega_{0}^{2} y=f(t), \tag{1}
\end{equation*}
$$

where $b=\frac{c}{m}, \omega_{0}^{2}=\frac{k}{m}$, and $f(t)=\frac{F_{\text {ext }}}{m}$.
If $c=b=0$, then the motion is undamped; otherwise, the motion is damped. If $F_{e x t}=f=0$, then we have free oscillations; otherwise, we have forced oscillations.

1.1 Notes on forced undamped oscillations

We generally assume $F_{\text {ext }}=F_{0} \cos (\omega t)$ or $F_{e x t}=F_{0} \sin (\omega t)$, where F_{0} and ω are constants.

1. If $\omega \neq \omega_{0}, y(0)=y^{\prime}(0)=0$, and $F_{\text {ext }}=F_{0} \cos (\omega t)$, then the solution to (1) is

$$
y=\left[\frac{2 F_{0}}{m \omega_{0}^{2}-m \omega^{2}} \sin \left(\frac{1}{2}\left(\omega_{0}-\omega\right) t\right)\right]\left\{\sin \left(\frac{\omega_{0}+\omega}{2} t\right)\right\} .
$$

If $\omega \approx \omega_{0}$, beats occur, meaning the larger wave in [] encloses the smaller wave in $\}$. This is also called amplitude modulation in circuits.
2. If $\omega=\omega_{0}$ and $F_{\text {ext }}=F_{0} \cos (\omega t)$, we're in the "trial particular solution fails" case, so the general solution is

$$
y=c_{1} \sin \left(\omega_{0} t\right)+c_{2} \cos \left(\omega_{0} t\right)+\left[\frac{F_{0}}{2 m \omega_{0}} t \sin \left(\omega_{0} t\right)\right],
$$

where the portion in [] contributes resonance, meaning the amplitude of that portion increases with t.

1.2 Notes on damped oscillations

First, note that the characteristic polynomial has roots $r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 \omega_{0}^{2}}}{2}$.

1. If $b^{2}>4 \omega_{0}^{2}$, then $y_{h}=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$, where $r_{1}<0$ and $r_{2}<0$, so we have overdamping, meaning that the damping suppresses ALL oscillations.
2. If $b^{2}=4 \omega_{0}^{2}$, we have a double root $r_{1}=-b / 2$, so $y_{h}=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}$, where $r_{1}<0$, meaning we have critical damping (the damping suppresses MOST oscillations).
3. If $b^{2}<4 \omega_{0}^{2}$, we have complex roots $r_{1}, r_{2}=-\frac{b}{2} \pm a i$, and $y_{h}=e^{-b t / 2}\left(c_{1} \sin (a t)+c_{2} \cos (a t)\right.$, so underdamping occurs, meaning the solutions are oscillatory with decaying amplitudes.
4. In the forced (meaning nonhomogeneous) case when $\omega \neq \omega_{0}$, the solution is $y=y_{h}+y_{p}$ where y_{h} is as in 1.-3. immediately above and $y_{p}=A \sin (\omega t)+B \cos (\omega t)$. Since $y_{h} \rightarrow 0$ as $t \rightarrow \infty$, y_{h} is called the transient solution, and since consequently $y \rightarrow y_{p}$ as $t \rightarrow \infty, y_{p}$ is called the steady state solution.

2 Electrical circuits

Given a circuit with

1. resistor with resistance of R ohms,
2. capacitor with capacitance of C farads,

3 . inductor coil with inductance of L henries, and
4. voltage source (i.e. a battery; also called applied voltage) of $E(t)$ volts,
we generally are tasked to find the current of $I(t)$ amperes or the charge of $Q(t)$ coulombs; these are related by $I(t)=\frac{d Q}{d t}$. Typically, this takes the form of the initial value problem

$$
\begin{equation*}
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E^{\prime}(t) \tag{2}
\end{equation*}
$$

with initial conditions $Q(0)=0$ and $I(0)=0$, and we must deduce $I^{\prime}(0)=\frac{E(0)}{L}$. This is derived from the corresponding initial value problem (with same initial conditions) for the charge, given by Kirchhoff's voltage law:

$$
\begin{equation*}
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t) . \tag{3}
\end{equation*}
$$

These problems are solved just like oscillator problems otherwise.

