2.6, \#34-40 even: Use the graph of $y=g(x)$ below to graph (a) $y=\frac{1}{2} g(x)$; (b) $y=2 g(x)$; (c) $\overline{y=g(2 x) ; ~(d) y=g}\left(\frac{1}{2} x\right)$.

$\underline{\text { 2.6, \#48-50 even: }}$ Use the graph of $y=g(x)$ below to graph (a) $y=g(-x) ;$ (b) $y=-g(x)$.

2.6, \#81: Use the graph of $y=f(x)$ below to graph (a) $y=2 f(x-2)-3$.
81. Graph $y=2 f(x-2)-3$.

2.7,\#21, 24, \& 25: Determine whether each graph depicts an even or odd function or neither. Provide a counterexample if neither.
21.

24.

2.7, \#90: For the graph of $y=f(x)$ below, write the intervals on which f is (a) increasing; (b) decreasing; (c) constant.

2.7, \#101: For the graph of $y=f(x)$ below, identify the location(s) and value(s) of any relative maxima or minima.
101.

103. The graph shows the depth d (in ft) of a retention
pond, t days after recording began.

a. Over what interval(s) does the depth increase?
b. Over what interval(s) does the depth decrease?
c. Estimate the times and values of any relative maxima or minima on the interval $(0,20)$.
d. If rain is the only water that enters the pond, explain what the intervals of increasing and decreasing behavior mean in the context of this problem.

