1 Curl and Divergence

Definition 1.1 Let $\mathbf{F} = \langle f, g, h \rangle$ be a differentiable vector field defined on a region D of \mathbb{R}^3 . Then, the **divergence** of \mathbf{F} on D is

div
$$\mathbf{F} := \nabla \cdot \mathbf{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \langle f, g, h \rangle = f_x + g_y + h_z,$$

where $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle$ is the **del operator**. If div $\mathbf{F} = 0$, we say that \mathbf{F} is source free.

Note that these definitions (divergence and source free) completely agrees with their 2D analogues in 15.4.

Theorem 1.2 Suppose that **F** is a radial vector field, i.e. if $\mathbf{r} = \langle x, y, z \rangle$, then for some real number p, $\mathbf{F} = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{p/2}}$, then div $\mathbf{F} = \frac{3-p}{|\mathbf{r}|^p}$.

Theorem 1.3 Let $\mathbf{F} = \langle f, g, h \rangle$ be a differentiable vector field defined on a region D of \mathbb{R}^3 . Then, the curl of \mathbf{F} on D is

 $\operatorname{curl} \mathbf{F} := \nabla \times \mathbf{F} = \langle h_y - g_z, f_z - h_x, g_x - f_y \rangle.$

If curl $\mathbf{F} = 0$, then we say \mathbf{F} is irrotational.

Note that $g_x - f_y$ is the 2D curl as defined in section 15.4. Therefore, if we fix a point (a, b, c), $[g_x - f_y](a, b, c)$, measures the rotation of **F** at the point (a, b, c) in the plane z = c. Similarly, $[h_y - g_z](a, b, c)$ measures the rotation of **F** in the plane x = a at (a, b, c), and $[f_z - h_x](a, b, c)$ measures the rotation of **F** in the plane x = a at (a, b, c), and $[f_z - h_x](a, b, c)$ measures the rotation of **F** in the plane x = a at (a, b, c), and $[f_z - h_x](a, b, c)$ measures the rotation of **F** in the plane y = b at the point (a, b, c). In other words, evaluated at the point P(a, b, c), $(h_y - g_z)$ gives the rotation at P of **F** about the line $\mathbf{r}(t) = \langle t, b, c \rangle$ (parallel to $\mathbf{i} = \langle 1, 0, 0 \rangle$), $(f_z - h_x)$ gives the rotation at P of **F** about the line $\mathbf{r}(t) = \langle a, t, c \rangle$ (parallel to $\mathbf{j} = \langle 0, 1, 0 \rangle$), and $(g_x - f_y)$ gives the rotation at P of **F** about the line $\mathbf{r}(t) = \langle a, b, t \rangle$ (parallel to $\mathbf{k} = \langle 0, 0, 1 \rangle$).

Definition 1.4 Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ be a nonzero constant vector, and let $\mathbf{r} = \langle x, y, z \rangle$, per usual. If \mathbf{a} is considered a position vector, it defines a line through the origin, the axis of rotation for the vector field \mathbf{F} defined by $\mathbf{F} = \mathbf{a} \times \mathbf{r} = \langle a_2 z - a_3 y, a_3 x - a_1 z, a_1 y - a_2 x \rangle$. We call \mathbf{F} the general rotation field about \mathbf{a} .

Notice that if $a_1 = a_2 = 0$ and $a_3 = 1$, then we obtain the familiar 2D rotation field $\langle -y, x \rangle$ in the *xy*-plane, and at each plane z = c, the exact same 2D rotation field appears. In the same way, if **a** is a general position vector, $\mathbf{F} = \mathbf{a} \times \mathbf{r}$ will represent a similar 2D rotation field in each plane perpendicular to **a**.

Theorem 1.5 Let \mathbf{a} be a nonzero position vector and \mathbf{F} be its rotation field. Then,

- (1) $\nabla \cdot \mathbf{F} = 0.$
- (2) curl $\mathbf{F} = \nabla \times \mathbf{F} = 2\mathbf{a}$.
- (3) If \mathbf{F} represents velocity (i.e. \mathbf{F} is a velocity field), then the constant angular speed of \mathbf{F} is

$$\omega := |\mathbf{a}| = \frac{1}{2} |\nabla \times \mathbf{F}|.$$

Theorem 1.6 Let \mathbf{F} and \mathbf{G} be differentiable vector fields in \mathbb{R}^3 , let c be a real number, and let u be a differentiable real-valued function. Then,

(1) curl $(\mathbf{F} + \mathbf{G}) = \text{curl } \mathbf{F} + \text{curl } \mathbf{G},$

(2) div $(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$,

(3) curl $(c\mathbf{F}) = c \cdot \text{curl } \mathbf{F}$,

(4) div $(c\mathbf{F}) = c \cdot \text{div } \mathbf{F}$, and

(5) curl $(u\mathbf{F}) = (\nabla u) \cdot \mathbf{F} + u(\text{curl } \mathbf{F})$, where \cdot represents the dot product and the latter multiplication is scalar.

Theorem 1.7 Let \mathbf{F} be a conservative vector field on an open region D of \mathbb{R}^3 . Let φ be the potential function for \mathbf{F} and suppose that φ has continuous second partial derivatives. Then, $\nabla \times \mathbf{F} = 0$, i.e. $\operatorname{curl}(\mathbf{F}) = \mathbf{0}$, and \mathbf{F} is therefore irrotational.

Theorem 1.8 Let $\mathbf{F} = \langle f, g, h \rangle$ be a vector field on \mathbb{R}^3 such that f, g, and h each have continuous second partial derivatives. Then, $\nabla \cdot (\nabla \times \mathbf{F}) = 0$, *i.e.* div(curl $\mathbf{F}) = 0$.

2 Parametrizing surfaces

Definition 2.1 A closed and bounded surface is a collection of points S in \mathbb{R}^3 which may be described as the image of rectangle $R = \{(u, v) : a \le u \le b, c \le v \le d\}$ under a mapping of the form $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$. Thus, S is the collection of all points $\{(x, y, z) : (x, y, z) = \mathbf{r}(u, v) \text{ for some } (u, v) \text{ in } R\}$, and the collection of vectors $\{\mathbf{r}(u, v)\}$ traces out all points on S. A surface may be unbounded as well by considering either $-\infty < u < \infty$ and/or $-\infty < v < \infty$.

Some parametric descriptions of surfaces you should remember are the following:

- 1. The cylinder $x^2 + y^2 = a^2$, $0 \le z \le h$. This is described parametrically as $\mathbf{r}(u, v) = \langle a \cos u, a \sin u, v \rangle$, where $0 \le u \le 2\pi$ and $0 \le v \le h$.
- 2. The **cone** of maximal radius *a* at z = h and vertex at the origin. This is described parametrically as $\mathbf{r}(u, v) = \langle \frac{av}{b} \cos u, \frac{av}{b} \sin u, v \rangle$, where $0 \le u \le 2\pi$ and $0 \le v \le h$.
- 3. The sphere $x^2 + y^2 + z^2 = a^2$. This is described parametrically as $\mathbf{r}(u, v) = \langle a \sin u \cos v, a \sin u \sin v, a \cos u \rangle$, where $0 \le u \le \pi$ and $0 \le v \le 2\pi$.
- 4. The plane ax + by + cz = d. Since z = (1/c)(d ax by), this is described parametrically as $\mathbf{r}(u, v) = \langle u, v, (1/c)(d au bv) \rangle$, where $-\infty < u < \infty$ and $-\infty < v < \infty$.

Tip 2.2 For other surfaces, try to think in terms of polar and spherical coordinates and consider the range of r, θ and z values or ρ , φ , and θ values taken. You should also get a relationship between these that allows you to eliminate one of those variables (setting it equal to an expression of the others). These should help you get a description of your surface in 2 variables, the desired parametric description.

3 Surface Integrals

On a surface S parametrized by $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$, $a \leq u \leq b$ and $c \leq v \leq d$ (call this rectangle in the *uv*-plane *R*), the tangent vector to *S* corresponding to a positive change in *u* with *v* fixed is $\mathbf{t}_u = \langle x_u, y_u, z_u \rangle$, and the tangent vector to *S* corresponding to a positive change in *v* with *u* fixed is $\mathbf{t}_v = \langle x_v, y_v, z_v \rangle$. Their cross product $\mathbf{t}_u \times \mathbf{t}_v$ is a vector normal to *S*. Moreover, since in small neighborhoods surfaces are nearly planes (tangent plane approximation) if the change in *u* is Δu and the change in *v* is Δv , since the area of the parallelogram spanned by $\Delta u \mathbf{t}_u$ and $\Delta v \mathbf{t}_v$ is $|(\Delta u \mathbf{t}_u) \times (\Delta v \mathbf{t}_v)| = |\mathbf{t}_u \times \mathbf{t}_v| \Delta u \Delta v$. Therefore, "adding up these tiny rectangles" approximating *S* (using limits $\Delta u \to 0$ and $\Delta v \to 0$), have the following definition.

Definition 3.1 Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a continuous scalar value function, and let S be as above. Suppose S is **smooth** (meaning x, y, and z are smooth functions of u and v), and suppose \mathbf{t}_u and \mathbf{t}_v are continuous on $R = [a, b] \times [c, d]$ in the uv-plane and $\mathbf{t}_u \times \mathbf{t}_v$ is nonzero on R. Then, the surface integral of f over S is

$$\iint_{S} f(x, y, z) dS := \iint_{R} f(x(u, v), y(u, v), z(u, v)) |\mathbf{t}_{u} \times \mathbf{t}_{v}| \, dA,$$

and if $f \equiv 1$, then the above integral is the surface area of S. Moreover, if S is given explicitly by z = g(x, y)where the pairs (x, y) vary over a region Rin the xy-plane, then the surface integral of f over S is

$$\iint_R f(x, y, g(x, y)) \sqrt{g_x^2 + g_y^2 + 1} \, dA.$$

We can find the average value of a function f on S just like in previous sections, and we can integrate a density function over a surface to obtain the mass of the surface.

Definition 3.2 A surface is **orientable** if the normal vectors $\mathbf{t}_u \times \mathbf{t}_v$ vary continuously over the surface, which in particular means the direction the normal vectors point ("up") is well-defined everywhere (an example where this doesn't occur is the Mobius strip). If the direction of the normal vector is determined everywhere on S, we say S is **oriented**. It's typical convention for us to have surfaces oriented so that normal vectors point in the <u>outward</u> direction.

Reeve Garrett

Since the unit normal vector to S as above is $\mathbf{n} = \frac{\mathbf{t}_u \times \mathbf{t}_v}{|\mathbf{t}_u \times \mathbf{t}_v|}$, if $\mathbf{F} = \langle f, g, h \rangle$ is a continuous vector field defined on a region containing S,

$$\mathbf{F} \cdot \mathbf{n} \, dS = \mathbf{F} \cdot \frac{\mathbf{t}_u \times \mathbf{t}_v}{|\mathbf{t}_u \times \mathbf{t}_v|} |\mathbf{t}_u \times \mathbf{t}_v| \, dA = \mathbf{F} \cdot (\mathbf{t}_u \times \mathbf{t}_v) \, dA,$$

so we have the following definition.

Definition 3.3 Let **F** be a continuous vector field in a region in \mathbb{R}^3 containing a smooth oriented surface S parametrized by $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$ ((u, v) in a region R), then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS := \iint_{R} \mathbf{F} \cdot (\mathbf{t}_{u} \times \mathbf{t}_{v}) \, dA,$$

where \mathbf{t}_u and \mathbf{t}_v are as above and continuous on R and \mathbf{n} is nonzero on R and consistent with the orientation of S. Moreover, if S is defined explicitly by z = s(x, y) for (x, y) in a region R in the xy-plane, then

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{R} (-fs_x - gs_y + h) \, dA.$$

Note that the integrals in the above definition measure the **flux** of **F** across the surface S. This typically applies when **F** has a physical interpretation, i.e. the flow of a fluid or transport of a substance across as S.

4 Stokes' Theorem

Theorem 4.1 [Stokes' Theorem] Let S be a smooth oriented surface in \mathbb{R}^3 with a smooth closed boundary C whose orientation is consistent with that of S. Assume that $\mathbf{F} = \langle f, g, h \rangle$ is a vector field whose components have continuous first partial derivatives on S. Then,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS,$$

where \mathbf{n} is the unit vector normal to S determined by the orientation of S.

Note 4.2 []

- 1. C is oriented counterclockwise if and only if \mathbf{n} is always pointing upward on S.
- 2. You can think of Green's Theorem (circulation form) as a special version of Stokes' Theorem where S lies in the xy plane, so the integral over S is just the usual double integral (" (u, v) = (x, y) and R = S"; i.e. S doesn't need to be parametrized) and $\mathbf{n} = \langle 0, 0, 1 \rangle$.
- 3. If **F** is conservative, all integrals above are zero because $\operatorname{curl} \mathbf{F} = \mathbf{0}$.
- 4. Stokes' Theorem can either be used as a shortcut to evaluate a line integral as a surface integral instead (avoiding parametrizing different parts separately) OR as a shortcut to evaluate a surface integral as a line integral instead (avoiding parametrizing difficult surfaces).
- 5. If S_1 and S_2 are two different oriented surfaces with normal vectors \mathbf{n}_1 and \mathbf{n}_2 , respectively, and common boundary curve C oriented counterclockwise, then Stokes' Theorem says

$$\iint_{S_1} (\nabla \times \mathbf{F}) \cdot \mathbf{n}_1 \, dS = \iint_{S_2} (\nabla \times \mathbf{F}) \cdot \mathbf{n}_2 \, dS$$

for any vector field \mathbf{F} .

- 6. If S is a closed oriented surface (there is no "boundary curve"), then $\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS = 0$.
- 7. As a consequence of Stokes' Theorem, if curl $\mathbf{F} = \mathbf{0}$ everywhere on an open simply connected region D in \mathbb{R}^3 , then $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for all simple closed smooth curves C in D and \mathbf{F} is conservative on D.

5 Divergence Theorem

Naturally extending the flux form of Green's Theorem to surfaces instead of curves, we obtain the following.

Theorem 5.1 [Divergence Theorem] Let \mathbf{F} be a vector field whose components have continuous first partial derivatives on a connected and simply connected region D, and let S be the closed oriented surface enclosing D with outward unit normal vector \mathbf{n} . Then,

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{D} \nabla \cdot \mathbf{F} \, dV.$$

Thus, the net divergence in a solid is the same as the flux across the surface which bounds it.

Note 5.2 []

1. The pure rotational vector fields $\mathbf{F} = \mathbf{a} \times \langle x, y, z \rangle$, where $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is a fixed vector field, ALWAYS have zero divergence, meaning their flux across a closed oriented surface S will always be zero.

2. If computing the flux across a surface with surface integrals is arduous (e.g. must parametrize six faces to a cube), the Divergence Theorem can make that ugly sum of surface integrals an easier triple integral.

3. If \mathbf{v} is the velocity field of a material and ρ is its density, then vector field $\mathbf{F} = \rho \mathbf{v}$ describes the mass transport of the material (units: mass/(area time)), meaning \mathbf{F} gives the mass of the material flowing past a point per unit of surface area per unit of time. Multiplying this by surface area, we obtain flux. The book uses this to motivate the derivation of the Divergence Theorem.

Theorem 5.3 Suppose a vector field \mathbf{F} satisfies all conditions for the Divergence Theorem on a region D enclosed between two oriented closed surfaces S_1 and S_2 with outward normal vectors \mathbf{n}_1 and \mathbf{n}_2 , respectively and where S_1 lies within S_2 . Then,

$$\iiint_D \nabla \cdot \mathbf{F} dV = \iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S_2} \mathbf{F} \cdot \mathbf{n}_2 \, dS \, - \, \iint_{S_1} \mathbf{F} \cdot \mathbf{n}_1 \, dS,$$

where $S = S_1 \cup S_2$ is the entire boundary of D.

Note 5.4 This version of the Divergence Theorem is applicable to vector fields not differentiable at the origin (e.g. radial vector fields).

Theorem 5.5 [Gauss' Law]

1. By the inverse square law, a charge Q generated at a point (we'll let it be the origin) creates an electrical field **E** given by $\mathbf{E}(x, y, z) = \frac{Q}{4\pi\epsilon_0} \frac{\mathbf{r}}{|\mathbf{r}|^3}$, where $\mathbf{r} = \langle x, y, z \rangle$ and ϵ_0 is a physical constant (the permittivity of free space). Since the flux of $\frac{\mathbf{r}}{|\mathbf{r}|^3}$ across any surface that encloses the origin is 4π (this is a VERY important property of this vector field), we have

$$\iint_{S} \mathbf{E} \cdot \mathbf{n} \, dS = \frac{Q}{\epsilon_0} \,,$$

for any surface S enclosing a charge Q at the origin. Shifting to any point, the computations stay the same, so we may assume Q is at any point.

2. If instead of a point charge Q we have a variable charge density q(x, y, z) defined on a region D enclosed by a surface S, we have $Q = \iiint_D q(x, y, z) dV$, so

$$\iint_{S} \mathbf{E} \cdot \mathbf{n} \, dS = \frac{1}{\epsilon_0} \iiint_{D} q(x, y, z) \, dV.$$

3. If T is a temperature distribution in a solid region D enclosed by a surface S, the vector field $\mathbf{F} = -k\nabla T$ is the heat flow vector field of T. If q(x, y, z) represents the sources of heat within D, by Gauss' Law

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = -k \iint_{S} \nabla T \cdot \mathbf{n} \, dS = \iiint_{D} q(x, y, z) \, dV.$$