
Sections 14.7, 15.1, & 15.2: Change of Variables, Vector Fields, and Line Integrals Reeve Garrett

1 Change of Variables

Definition 1.1 Let S be a set (region) in R2 or R3. A transformation of S is an assignment T : S → R
(where R is a region in R2 or R3), where each ordered pair (u, v) (or triple (u, v, w) if S ⊆ R3; in either
case, we can consider the pair/triple as a point P ) is assigned to a pair (x, y) := (g(u, v), h(u, v)) in R
(the 3D/triple case being completely analogous; this is thought of as a point T (P )), where g : R2 → R and
h : R2 → R (analogously in 3D, we have 3 functions from R3 to R). A transformation T : S → R is
one-to-one if T (P ) = T (Q) ONLY when P = Q. If for every point Q in R, Q = T (P ) for some P in S,
we say T maps onto R and that R is the image of T .

Theorem 1.2 Let S be a closed and bounded region in R2, and let T : S → R be a one-to-one transformation
of S that maps S onto R given by (u, v) 7→ (x, y) := (g(u, v), h(u, v)). Then,∫∫

R

f(x, y)dA =

∫∫
S

f(g(u, v), h(u, v))|J(u, v)|dA,

where |J(u, v)| is the absolute value of the Jacobian (determinant)

J(u, v) =

∣∣∣∣xu xv

yu yv

∣∣∣∣ =

∣∣∣∣gu gv
hu hv

∣∣∣∣ .
The corresponding theorem for transformations in R3 is completely analogous.

Tip 1.3 Page 1076 of the textbook has some terrific advice for choosing a change of variables and whether
to use the conversion (x, y)→ (u, v) or (u, v)→ (x, y). It would be wise to follow that advice.

Recall that for a 2× 2 matrix A =

[
a b
c d

]
, the inverse is A−1 = 1

ad−bc

[
d −b
−c a

]
.

Theorem 1.4 Let T : S → R be a one-to-one transformation of S that maps S onto R given by (u, v) 7→
(x, y) := (g(u, v), h(u, v)) and let JT (u, v, w) be its Jacobian. If T−1 is its inverse transformation and

JT−1 =

∣∣∣∣ux uy

vx vy

∣∣∣∣ is the Jacobian for T−1, then JT−1 = (JT )−1 ◦ T, where the function composition simply

means to plug in the substitutions (x, y) := (g(u, v), h(u, v)) into (JT )−1 into the inverse matrix for JT .
Similarly JT = (JT−1)−1 ◦ T−1. This can be used as a shortcut to compute JT when you’ve computed u and
v in terms of x and y so that you don’t have to solve for x and y in terms of u and v.

2 Vector Fields

Definition 2.1 A vector field in R2 is a function F : R2 → R2 assigning each point (x, y) in R2 to a
vector F(x, y) = 〈f(x, y), g(x, y)〉, where f : R2 → R and g : R2 → R. If f and g are both continuous, then
we say that F is continuous, and if f and g are both differentiable, then we say that F is differentiable.
The definitions for 3D vector fields F : R3 → R3 are completely analogous.

Procedure 2.2 Pictorially, we represent a vector field F by drawing the vector F(x, y) with tail at the point
(x, y) for some collection of points (x, y) (usually at integer points). It’s also generally most helpful to start
by plotting vectors F(x, 0) and F(0, y) on the coordinate axes. For vector fields in 2D, notice the slope of the
vector F(x, y) = 〈f(x, y), g(x, y)〉 is g(x, y)/f(x, y).

Heuristically, we think of vector fields as indicating the flow of a particle through a plane or in space
and the length of a vector at a point as indicating the speed at which the particle is traveling (longer vector
indicating greater speed).

Definition 2.3 A radial vector field is a vector field for which all vectors F(x, y) point parallel to the
position vectors for their tails, 〈x, y〉. If we set r = 〈x, y〉, then a radial vector field will be of the form
F(x, y) = r

|r|p , where p is a fixed real number; for each point (x, y) and such an F, |F(x, y)| = 1
|r|p−1 .
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Procedure 2.4 To determine whether a vector field F in R2 is parallel or perpendicular to the tangent line
to a given curve C at a point (x, y):

(1) If C is given by g(x, y) = D, then F is parallel to the tangent line if F · ∇g = 0 and perpendicular if
∇g and F are parallel.

(2) If C is parametrized by r(t) = 〈x(t), y(t)〉, then F is parallel to the tangent line at (x(t), y(t)) if
F(x(t), y(t)) and r′(t) are parallel, and F is perpendicular to the tangent line at (x(t), y(t)) if F(x(t), y(t)) ·
r′(t) = 0.

Definition 2.5 If F is a vector field such that F = ∇ϕ for some function ϕ : R2 → R or ϕ : R3 → R, then we
say F is a gradient field and ϕ is called the potential function for F. The level curves of a potential func-
tion ϕ are called equipotential curves; these are particularly interesting because F is orthogonal to the equipotential curves EVERYWHERE.
Stitching the vectors in the vector field together to form continuous curves, we obtain what are often called
flow curves or streamlines that are everywhere orthogonal to the level curves.

3 Line Integrals

Definition 3.1 For an integrable function f : R2 → R and a smooth curve C parametrized by r(t) =
〈x(t), y(t)〉, a ≤ t ≤ b, the line integral of f over C is given by∫

C

fds =

∫ b

a

f(x(t), y(t))|r′(t)|dt.

Depending on the problem, you may need to start by parametrizing C. Also, DO NOT FORGET the |r′(t)|
factor!! Line integrals for f : R3 → R are defined completely analogously.

Definition 3.2 Let F : R2 → R2 be a vector field that is continuous in a region containing a smooth oriented
curve C parametrized by r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b. Then, if T is the unit tangent vector at each point of
C (consistent with the orientation of C), then the line integral of F over C is∫

C

F ·Tds :=

∫ b

a

F(x(t), y(t)) · r′(t)dt.

Sometimes the notation
∫
C

F·dr is used too. Line integrals for F : R3 → R3 are defined completely analo-
gously.

Definition 3.3 Let F : R3 → R3 be a continuous force field in a region D containing a smooth oriented
curve C parametrized by r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b, with unit tangent vector T consistent with the
orientation. Then, the work done by moving an object along C in the positive direction is

W =

∫
C

F ·Tds.

Definition 3.4 A curve C is closed if its initial and terminal points are the same and simple if it does
not cross itself.

Definition 3.5 Let F : R3 → R3 be a continuous vector field in a region D containing a closed smooth ori-
ented curve C, with unit tangent vector T consistent with the orientation. Then, the circulation of F on C is
given by

∫
C

F·Tds. Intuitively, circulation measures how much F agrees with the orientation of C along the
points on C.

Definition 3.6 Let F : R2 → R2 be a continuous vector field given by F(x, y) = 〈f(x, y), g(x, y)〉 in a region
D containing a simple closed smooth oriented curve C with parametrization r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b,
unit tangent vector T consistent with the orientation, and unit normal vector n := T × 〈0, 0, 1〉. Then, the
flux of the vector field F along C is given by∫

C

F · nds :=

∫ b

a

{f(x(t), y(t))]y′(t)− [g(x(t), y(t))]x′(t)}dt.

If C is oriented counterclockwise, n will be pointed outward, so we call the above integral the outward flux.
Intuitively, flux measures how much F agrees with the vector field of normal vectors n along C.
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