
Sections 14.4, 14.5, & 14.6: Triple Integrals, Cylindrical and Spherical Coordinates, and Mass Calculations Reeve Garrett

1 Triple Integrals in Rectangular Coordinates

Definition 1.1 Given a region D in R3 (3D space), the volume of D is
∫∫∫

D
1dV , where dV is replaced by

some arrangement of dz, dy, and dx and the bounds of integration become functions and numbers (tips to
figure them out are given below). Moreover, if vol(D) denotes the volume of D, then the average value of a
continuous function f on D is f̄ = 1

vol(D)

∫∫∫
D
fdV .

Procedure 1.2 A similar but more general process than finding the volume of the solid D bounded between
two surfaces z = f(x, y) (bottom) and z = g(x, y) (top) via a double integral on the region R obtained by
projecting D onto the xy-plane applies for finding the volume of D by a triple integral: just let the inner
integral be from f(x, y) to g(x, y), the outer double integral be over R in the xy-plane, and the integrand be 1.
Like in the previous sections, you find R by either setting f(x, y) = g(x, y) or by appealing to basic geometry
(e.g. the wedge examples). Sometimes you want to do another variable first, though - for instance, when a
“top z” and/or “bottom z” is not apparent. See the next tip for determining which order you want. For dy
first, you want to find an inner y and outer y, and from there, project your solid onto the xz-plane to get a
region R (do this the same way as above: set the inner and outer y equal to each other, or appeal to basic
geometry). This will get you your bounds for your triple integral. Doing dx first is completely analogous.

Tip 1.3 If you’re given a region D to integrate over bounded by surfaces or curves defined by equations, look
for dependence among variables. This helps you determine an integration order: For instance, if z depends
on x and y, y depends on x, and x lies between two numbers, then we know our integration order should be
dzdydx.

Tip 1.4 A similar but more general process than finding the volume of the solid D bounded between two
surfaces z = f(x, y) (bottom) and z = g(x, y) (top) via a double integral on the region R obtained by
projecting D onto the xy-plane applies for finding the volume of D by a triple integral: just let the inner
integral be from f(x, y) to g(x, y), the outer double integral be over R in the xy-plane, and the integrand be
1.

Tip 1.5 For a triple integral, if you do the innermost integral, look at the bounds for the remaining double
integral - you may be able to make a conversion to polar to save yourself some work!

Tip 1.6 If we want to switch the integration order, we need to determine what goes where as far as the
integration bounds go, and toward that end, the most important thing we care about is what the region
looks like. Sometimes, we only want to transpose the outer 2 variables of integration: for this, it suffices
to just consider what that region looks like in R2 (considered as either the xy-plane, xz-plane, or yz-plane,
depending on context).

2 Triple Integrals in Cylindrical and Spherical Coordinates

Definition 2.1 Cylindrical coordinates for a point (x, y, z) in R3 are given by (r, θ, z), where r =√
x2 + y2, the distance from the origin to the point (x, y, 0), and θ is the angle (taken counterclockwise)

formed by the vector 〈x, y, 0〉 with the positive x-axis. In other words, the r and θ here correspond exactly
with those in polar coordinates in R2, the xy-plane.

Procedure 2.2 For cylindrical coordinates, use the conversions x = r cos θ, y = r sin θ, tan θ = y/x, and
x2 + y2 = r2, just as in polar. Also, dV becomes rdzdrdθ.

Definition 2.3 Spherical coordinates for a point (x, y, z) in R3 are given by (ρ, ϕ, θ), where ρ is the
distance from the origin to (x, y, z), ϕ is the angle (between 0 and π) formed by the vector 〈x, y, z〉 (the
ray from the origin to the point (x, y, z)) with the vector 〈0, 0, 1〉 (positive z-axis), and θ is the same as in
cylindrical coordinates. To see that this weird triple completely determine (x, y, z), which we equivalently
think of as the vector 〈x, y, z〉, notice that ρ is how far out the point is, ϕ is the angle of inclination from the
xy-plane (how steep the line from the origin to your point is), and θ is the horizontal direction (heuristically,
how much north, south, east, west, or combinations thereof the point (x, y, z) is from the origin).
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Procedure 2.4 For spherical coordinates, use the conversions x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ,
r = ρ sinϕ (where r =

√
x2 + y2, as before), and ρ2 = x2 + y2 + z2. To find ϕ and θ when converting to

cylindrical from rectangular coordinates, use trigonometry. Also dV becomes ρ2 sinϕdρdϕdθ (the order of
these may be different in an actual problem).

Tip 2.5 To find the volume of a region, sometimes it’s most helpful to think about it as a bigger region with
a smaller subregion omitted. To see this in action, see problem 52 in section 2.5

Tip 2.6 Don’t forget that you have formulas for volumes of cylinders, spheres, and cones! You can appeal
to these to avoid calculus in some places! See problem 42 in section 2.4 and problem 52 in section 2.5, for
instance.

3 Mass Calculations

Definition 3.1 Suppose n different objects with mass m1, m2, ..., mn are placed on a line segment at
positions x1 ≤ x2 ≤ · · · ≤ xn, respectively. Then, the center of mass (also called the balance point or
centroid) of the system is

x̄ =
m1x1 +m2x2 + · · ·+mnxn

m1 +m2 + · · ·+mn
,

and the moments are the mixi.

Definition 3.2 Let ρ be an integrable density function on the interval [a, b] (representing a thin rod or wire;
ρ(x) is the density of the rod/wire at the point x). Then, the center of mass is located at x̄ = M

m , where

M :=
∫ b

a
xρ(x)dx is the total moment and m :=

∫ b

a
ρ(x)dx is the mass of the wire/rod.

Definition 3.3 Let ρ be an integrable density function on the interval on a closed and bounded region
R in R2 (representing something like a thin plate, for instance; ρ(x, y) is the density of the rod/wire at

the point (x, y)). Then, the center of mass is located at (x̄, ȳ), where x̄ :=
My

m
=

∫∫
R
xρ(x, y)dA∫∫

R
ρ(x, y)dA

and

ȳ :=
Mx

m
=

∫∫
R
yρ(x, y)dA∫∫

R
ρ(x, y)dA

. The numerators My and Mx are the moments with respect to the y-axis and

x-axis, respectively, and m is the mass of the object represented by R. These names come from the facts
that, for instance My measures distances from the y-axis (so it has x-integrands), and similarly for Mx. If ρ
is constant, regardless of what constant ρ is, (x̄, ȳ) will always be the same; we call this point the centroid
of the unit-density region R.

Definition 3.4 Let ρ be an integrable density function on the interval on a closed and bounded region D
in R3 (representing a solid; ρ(x, y, z) is the density of the solid at the point (x, y, z)). Then, the center

of mass is located at (x̄, ȳ, z̄), where x̄ :=
Myz

m
=

∫∫
D
xρ(x, y, z)dV∫∫

D
ρ(x, y, z)dV

, ȳ :=
Mxz

m
=

∫∫
D
yρ(x, y, z)dV∫∫

D
ρ(x, y, z)dV

, and

z̄ :=
Mxy

m
=

∫∫
D
zρ(x, y, z)dV∫∫

D
ρ(x, y, z)dV

. The numerators Myz, Mxz and Mxy are the moments with respect to the

coordinate planes in their subscripts and m is the mass of the object represented by D. These names come
from the facts that, for instance Myz measures distances from the yz-plane (so it has x-integrands), and
similarly for the other moments.

WARNING 3.5 The center of mass NEED NOT of an object/region lie in the region!
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