
Sections 13.7 & 13.8: Tangent Planes, Maximum and Minimum Problems Reeve Garrett

1 Tangent planes and linear approximation

Definition 1.1 A surface is defined explicitly if it is described by an equation of the form z = f(x, y); it
is defined implicitly if it’s described by an equation of the form F (x, y, z) = 0.

Definition 1.2 Suppose F (x, y, z) = 0 is a surface S described implicitly and P (a, b, c) is a point on the
surface. Then, the tangent plane to S at the point P is 〈Fx(a, b, c), Fy(a, b, c), Fz(a, b, c)〉·〈x−a, y−b, z−c〉 = 0.

Definition 1.3 Suppose z = f(x, y) is a surface S described explicitly and P (a, b, f(a, b)) is a point on the
surface. Then, the tangent plane to S at the point P is 〈fx(a, b), fy(a, b),−1〉 · 〈x − a, y − b, z − c〉 = 0, or
equivalently, z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Definition 1.4 The linear approximation to the function z = f(x, y) at the point (a, b, f(a, b)) is the
tangent plane at that point given by L(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b). Near the point
(a, b, f(a, b)), the plane provides a close approximation to the original function. Let (x, y, f(x, y)) be a point
near (a, b, f(a, b)) Define ∆z = f(x, y)−f(a, b) and dz = L(x, y)−f(a, b) = fx(a, b)(x−a)+fy(a, b)(y−b) =
∇f · 〈dx, dy〉. Then, ∆z ≈ dz.

2 Local extrema, critical points, and the second derivative test

Definition 2.1 A function f has a local max at (a, b) if f(x, y) ≤ f(a, b) for all points (x, y) in the domain
of f contained in some open disk centered at (a, b). Similarly define local min. We call local minimum and
local maximum points local extrema.

Theorem 2.2 If a function f has a local max or min at (a, b) and the partial derivatives fx and fy exist at
(a, b), then fx(a, b) = fy(a, b) = 0.

Definition 2.3 An interior point (a, b) in the domain of f is a critical point of f if either (A) fx(a, b) =
fy(a, b) = 0, or (B) at least one of the partial derivatives fx and fy does not exist at (a, b).

Definition 2.4 Let f be a function that is differentiable at a critical point (a, b). We say f has a saddle
point at (a, b) if in every open disk centered at (a, b), there are points (x, y) for which f(x, y) > f(a, b) and
points (x, y) for which f(x, y) < f(a, b).

Theorem 2.5 : The Second Derivative Test. Suppose that the second partial derivatives of a function
f are continuous throughout an open disk centered at a point (a, b), where fx(a, b) = fy(a, b) = 0. Let
D(x, y) = fxx(x, y)fyy(x, y)− (fxy(x, y))2. Then the following are true:

1. If D(a, b) > 0 and fxx(a, b) < 0, then f has a local max at (a, b).

2. If D(a, b) > 0 and fxx(a, b) > 0, then f has a local min at (a, b).

3. If D(a, b) < 0, then f has a saddle point at (a, b).

4. If D(a, b) = 0, then no conclusion can be reached.

3 Absolute Extrema and the Extreme Value Theorem

Definition 3.1 Let f be a function defined on a set R in R2, and let (a, b) be a point in R. If f(a, b) ≥ f(x, y)
for all points (x, y) in R, then we say (a, b) is an absolute maximum of f in R. Similarly, we define an
absolute minimum, and any point (a, b) which is a absolute minimum or absolute maximum is called an
absolute extremum (plural extrema).

Thankfully, we have a powerful tool for finding absolute extrema: a strengthened Extreme Value Theorem.
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Theorem 3.2 : Strengthened Extreme Value Theorem. A function f that is continuous on a closed
and bounded set R in R2 always attains its absolute maximum and absolute minimum values on R. Moreover,
these absolute extrema occur in two ways: (1) the extremum may be a critical point in the interior of R, or
(2) the extremum occurs in the boundary of R.

You must cite this theorem in your take home quiz solutions when a problem tells you to
find absolute extrema, meaning follow the procedure below, state whether the set considered is closed and
bounded, and if it is say “By the strengthened Extreme Value Theorem, this point is the absolute maximum,
and this point is the absolute minimum.”

Procedure 3.3 Let f be a continuous function defined on a closed and bounded region R in R2. To find
the absolute maximum and minimum values of f on R:

1. Determine the values of f at all critical points in R.

2. Find the maximum and minimum values of f on the boundary of R.

3. The greatest function value found in Steps 1 and 2 is the absolute maximum value of f on R, and the
least function value found in Steps 1 and 2 is the absolute minimum value of f on R.

Tip 3.4 To deal with the boundary, you will have to either deal with each segment of it separately (if it’s
a polygon) or parametrize the boundary (if it’s a curve) and plug that parametrization into f to make f a
function of a single variable so that single variable calculus techniques apply (see Example 7 on p.979).

WARNING 3.5 If your region is open and/or unbounded, you can’t rely on the theorem and procedure.
In fact, one or both types of extrema may not even exist on the region. The second derivative test will help
you determine whether a given critical point is a local maximum, minimum, saddle point, or neither. What
follows is some advice to determine whether a given local minimum or maximum is absolute. If it’s open,
pay attention to limits as you approach the boundary, if there is one (e.g. Example 8, p.981). Particularly
for unbounded regions, it may also help to think of the function as well as the region geometrically: most
commonly, this will mean an extrema will be the closest or furthest point away on a region R (e.g. a plane
or hyperboloid) from a fixed point (a, b), and it will be obvious whether there’s a such a closest or furthest
point or not (e.g. Example 9, p.981).
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