
Sections 13.4-13.6: Partial Derivatives, Differentiability, The Chain Rule, Directional Derivatives, and the Gradient Reeve Garrett

1 Partial derivatives and Differentiability

Definition 1.1 Given a function f of two variables given by z = f(x, y), the first partial derivative of f with
respect to x at the point (a, b), denoted by either fx(a, b) or ∂f

∂x
(a, b), is defined as

fx(a, b) = lim
h→0

f(a + h, b)− f(a, b)

h
= lim

x→a

f(x, b)− f(a, b)

x− a
,

and the first partial derivative of f with respect to y at the point (a, b), denoted fy(a, b) or ∂f
∂y

(a, b), is defined
as

fx(a, b) = lim
h→0

f(a, b + h)− f(a, b)

h
= lim

y→b

f(a, y)− f(a, b)

y − b
.

Note 1.2 In practice, these partial derivatives (for arbitrary points (x, y)) are usually computed with the same “short-
cuts” as in first semester calculus by treating the variable you’re not differentiating with respect to as a constant.
HOWEVER, just because you can’t compute a partial derivative with respect to these shortcuts doesn’t mean the par-
tial derivative doesn’t exist (you can see this, for example, in the solution to Exercise 58 in section 13.4); in this case,
we appeal to the limit definition given above.

Notation 1.3 When considering higher order partial derivatives, we abide by the following notational conventions:

if we differentiate with respect to x first and then differentiate with respect to y, we denote this by ∂2f
∂y∂x

:= ∂
∂y

(
∂f
∂x

)
or fxy := (fx)y; notation is similar for the other partial derivatives. Notice that in these two notations for the same
thing the order of the variables are in opposite orders - take note of this and BE CAREFUL.

Theorem 1.4 (Clairut) Assume that f is defined on an open set D of R2 and that fxy and fyx are continuous
throughout D. Then, fyx = fxy on D.

The book’s definition of differentiability is not typically very useful or computationally practical in practice, so
we’re usually going to use the theorem below to determine differentiability (you may use it as a definition).

Theorem 1.5 Suppose that a function f has partial derivatives fx and fy defined on an open set containing (a, b)
and that fx and fy are both continuous at the point (a, b). Then, f is differentiable at the point (a, b).

WARNING 1.6 Note that this theorem says the existence of partial derivatives at (a, b) is NOT enough to conclude
that f is differentiable at the point (a, b). These partial derivatives MUST be continuous as well at (a, b). This is
illustrated in 13.4 Exercise 58, for instance. Moreover, partial derivatives at (a, b) may exist despite the fact f isn’t
continuous at (a, b).

Theorem 1.7 If a function f is differentiable at the point (a, b), then f is continuous at (a, b). In particular, if f is
not continuous at (a, b), it cannot be differentiable at (a, b).

2 The Chain Rule

First Scenario: We consider the case where z is a function of two variables x and y, which are both functions of
one variable t. Then,

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

Second Scenario: We consider the case where f is a function of a pair of variables x and y, where both x and y
are both functions of another pair of s and t. Then,

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
and

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
.
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In general, variable dependence could look different from this (it could be more complicated, in fact!). The
best way to determine how the Chain Rule works in computing a given partial derivative is by setting up a depen-
dence tree and looking at all possible paths from the top to your desired variable. For example, the following is the
dependence tree for z = f(x, y) where x and y are functions of s and t (as in the second scenario):

Notice that from this tree the formulas on the previous page for ∂z
∂s

and ∂z
∂t

follow quite naturally when considering
all possible paths from z to s and z to t, respectively, on the tree above, and multiplying the legs of the path.

Procedure 2.1 Consider a function F : R2 → R that is differentiable on its domain, and suppose that the equation
F (x, y) = 0 defines y as a differentiable function of x (in general, we’ll assume this; a result from advanced calculus
called the Implicit Function Theorem determines when this is true). Then, dy

dx
= −Fx

Fy
.

3 Directional Derivatives and the Gradient

Definition 3.1 Let f : R2 → R be a differentiable function at the point (a, b) and let u = 〈u1, u2〉 be a unit vector.
Then, the directional derivative of f at the point (a, b) in the direction of u is Duf(a, b) = 〈fx(a, b), fy(a, b)〉 · u,
and the vector ∇f(a, b) := 〈fx(a, b), fy(a, b)〉 is called the gradient of f at (a, b). In particular, if f is differentiable
on its domain, ∇f is a function defining each point (a, b) to a vector ∇f(a, b); we call such functions vector fields.

The gradient is actually has enormous significance besides its use in computing directional derivatives. We list
some results below.

Theorem 3.2 Let f : R2 → R be a differentiable function at the point (a, b).
1. f has its maximum rate of increase from the point (a, b) in the direction of its gradient ∇f(a, b). The rate of that
increase in this direction is |∇f(a, b)|.
2. f has its maximum rate of decrease from the point of (a, b) in the direction opposite from its gradient, i.e. in the
direction of −∇f(a, b). The rate of that decrease in this direction is −|∇f(a, b)|.
3. The directional derivative is 0 in any direction orthogonal to ∇f(a, b).
4. Provided ∇f(a, b) 6= 0, if f(a, b) = c, then ∇f(a, b) is perpendicular to the tangent vector at the point (a, b) on the
level curve f(x, y) = c in the xy-plane.

Here’s a picture illustrating what 4. means visually:

As we’ll learn in 13.9, the result 4. stated in this theorem is extremely important: it’s the reason why Lagrange
multipliers work!

Definitions and results for functions of 3 variables are more or less the same, so we won’t state them here.
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