
Sections 13.1-13.3: Planes, Surfaces, Graphs, Level Curves, and Limits Reeve Garrett

1 Planes

Procedure 1.1 Given a vector n = 〈a, b, c〉 and a point P0(x0, y0, z0), a plane is formed by considering all points

P (x, y, z) such that
−−→
P0P = 〈x − x0, y − y0, z − z0〉 is perpendicular to n, i.e. 〈a, b, c〉 · 〈x − x0, y − y0, z − z0〉 = 0.

From this, we get the standard form of the general equation for a plane ax + by + cz = d, where d = ax0 + by0 + cz0.

Definition 1.2 Two planes are parallel if their normal vectors are parallel (scalar multiples). Two planes are or-
thogonal if their normal vectors are orthogonal. Use this definition to determine whether a pair of planes is parallel
or orthogonal.

Procedure 1.3 How to find planes in various setups:

1. To find the plane determined by 3 non-collinear points P0 = 〈x0, y0, z0〉, Q0, and R0, notice the normal

vector is n =
−−−→
P0Q0 ×

−−−→
P0R0.

2. To find the plane parallel to a given plane ax+ by+ cz = d containing a point P0 = 〈x0, y0, z0〉, notice that
by definition n = 〈a, b, c〉 is our desired normal vector.

3. To find a plane perpendicular to a given plane ax + by + cz = d containing a point P0 = 〈x0, y0, z0〉, we
need a vector n perpendicular to 〈a, b, c〉.

Procedure 1.4 To find the equation r(t) = a + tv of the line of intersection for a pair of (nonparallel) planes
ax + by + cz = d and ex + fy + gz = h,
1. Calculate the cross product of the two planes’ normal vectors. This will be your v.
2. a is represented by a point on your line. To find this point, fix a value of x, y, or z (e.g. set z = 0, keep other
variables free) in the two plane equations and then solve the resulting system of 2 linear equations in the other 2
variables (e.g. setting z = 0, solve the 2 equations in x and y). The resulting triple is your a.

2 More general surfaces

Definition 2.1 Given a curve C in a plane P and a line ` not in P , the cylinder determined by P and ` is the
surface consisting of all lines parallel to ` passing through C. Note that all curves in the xy-plane become
cylinders when extended to 3 dimensions, because z is unconstrained and therefore can be ANYTHING!

Definition 2.2 A trace of a surface is the set of points at which the surface intersects a plane parallel to one of the
coordinate planes. These will be curves and the traces in the coordinate planes are called the xy-trace (obtained by
setting z = 0 in the equation for the surface), bf yz-trace (x = 0), xz-trace (y = 0).

Definition 2.3 A quadric surface is a surface described by a quadratic equation in 3 variables, i.e.

Ax2 + by2 + Cz2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0,

where all coefficients are constants and at least one of A, ..., F is nonzero.

Procedure 2.4 To sketch a graph a quadric surface, doing the following is generally a helpful place to start:

1. Determine the points where x = y = 0, x = z = 0, and y = z = 0.

2. Find the xy−, xz−, and yz−traces.

3. Sketch at least two traces in parallel planes (e.g. z = 0 and z = ±1), then draw smooth curves connecting them,
keeping in mind what traces in other coordinate planes look like.

4. Take a look at Table 13.1 on page 901 in the book. Memorizing that table may be helpful to give you a vague
idea of what a graph should look like.

3 Functions of 2 or more variables

Definition 3.1 Given 2 sets A and B, a function f from A to B is a rule that assigns every member of A to a (not
necessarily unique) member of B; we denote this by f : A→ B. We denote by Rn the set of all n-tuples (x1, x2, ..., xn)
of real numbers. For now, we’ll consider functions f : D → R where D is Rn or a subset of Rn (we denote this by
D ⊆ Rn; usually we’ll consider n = 2 or n = 3 in this course) called the domain of f (by definition, the set of
all (x1, ..., xn) in Rn for which f(x1, ..., xn) is defined). The set of all real numbers z such that z = f(x1, x2, ..., xn)
for some n-tuple (x1, x2, ..., xn) is called the range of f . The graph of such a function f is the set of all points
(x1, x2, ..., xn, z) where z = f(x1, x2, ..., xn).
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In chapter 12, we considered f : D → Rn where D was a subset of R (vector-valued functions), and later, in
Chapter 15, we’ll consider functions f : Rn → Rm, which are called vector fields.

Definition 3.2 Considering functions f : R2 → R given by z = f(x, y), whose graphs are represented by surfaces
in R3, it’s helpful to look at level curves; that is, curves in the xy-plane obtained by fixing a set z value (e.g.
f(x, y) = 0, f(x, y) = 2, etc.). Stitching these level curves together at their various levels helps one visualize what the
surface represented by the graph looks like.

4 Limits and continuity

Definition 4.1 Given a function f : D → R (where D ⊆ R2 is the domain of f) and a point (a, b) in R2, the limit
as (x, y) approaches (a, b) (PROVIDED IT EXISTS) is the value f(x, y) approaches when (x, y) approaches (a, b)
along ALL POSSIBLE PATHS to (a, b). We denote this by lim

(x,y)→(a,b)
f(x, y).

Just like in a single variable, the constant function, sum, difference, constant multiple, product, quotient, and power
laws apply to limits (see p.918-919 in the book). This allows one to find limits of polynomial, rational (provided the
limit of the denominator isn’t 0), and algebraic (e.g. square root functions) functions.

Definition 4.2 Like in a single variable, a function f : D → R (where D ⊆ R2 is the domain of f) is continuous
if lim

(x,y)→(a,b)
f(x, y) = f(a, b), provided both quantities exist. A composition g ◦ f of continuous functions f : R2 → R

and g : R→ R is always continuous. Polynomial, rational, and algebraic functions are ALWAYS continuous on their
domains. So, for instance, since sin is continuous everywhere and g(x, y) = x7y3 + 3x+7

x2−9
is a rational function and

hence continuous on its domain, the function f(x, y) = sin(x7y3 + 3x+7
x2−9

) is continuous on the domain of g, which is
all (x, y) except where x = ±3.

Definition 4.3 A polynomial p(x, y) is homogeneous if each term of the polynomial has the same total degree in
x and y. For example, p(x, y) = 5x3 + 3x2y + 7

3
xy2 is homogeneous because all terms have total degree 3.

Procedure 4.4 To prove that a limit lim
(x,y)→(a,b)

f(x, y) doesn’t exist, use the two-path test: pick 2 paths tending

toward (a, b) where the “limits” don’t agree. Usually, you’ll do this along curves, and for (a, b) = (0, 0) and f(x, y) =
p(x,y)
q(x,y)

a rational function, this is especially easy:

1. If p(x, y) and q(x, y) are both homogeneous polynomials of the same total degree, set y = mx or x = my for
different values of m.

2. If p(x, y) and q(x, y) are not homogeneous polynomials and are not of the same degree, set y = mxn or x = myn

(choose y = mxn if y shows up in smaller degrees than x and vice-versa) so that they become homogeneous of
the same degree (and necessarily in one variable).

5 Basic topology in R2

Definition 5.1 An open disk centered at a point (a, b) in R2 is the set of all points within (NOT on) a circle
centered at (a, b). A point (a, b) in a set U in R2 is an interior point of U if there is a (possibly very small) open
disk centered at (a, b) contained entirely within U . A set U is open if every point of U is an interior point. Given a
set R in R2, a point (a, b) (NOT necessarily in R) is a boundary point of R if for every open disk centered at x,
there are both points in R and not in R.

Example 5.2 The box R = {(x, y) : 0 < x < 1, 0 < y < 1} is open, whereas the set R′ = {(x, y) : 0 < x ≤ 1, 0 <
y < 1} is not because if you take any point (1, y) in R′, any disk of positive radius (say of radius r > 0) around it can’t
be contained in R′ since the would have to contain the point (1 + r

2
, y), which clearly isn’t in R′. So, R′ is not open.

All points on the line segments {0 ≤ x ≤ 1, y = 0}, {0 ≤ x ≤ 1, y = 1}, {x = 0, 0 ≤ y ≤ 1}, and {x = 1, 0 ≤ y ≤ 1}
are boundary points for both R and R′. These comprise ALL the boundary points for R and R′.

Definition 5.3 A set R in R2 is closed if it contains all of its boundary points. A set R in R2 is bounded if it
can be contained in a disk of finite radius. For example, the set of all points (x, y) inside or on the parabola y = x2

is a closed but not bounded set, and if we take this set and exclude the points on the parabola, then we end up with a
set which is open and unbounded. The rectangle R′′ = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is both closed and bounded. R
and R′ in the above example are bounded but not closed.
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