
Sections 12.7-12.9: Motion in Space, Lengths of Curves, Basic Differential Geometry of Curves Reeve Garrett

Notation 0.1 In this handout and in all further handouts, we will abide by the notational convention that A := B
means that we define A to be equal to the quantity B (which was already defined earlier).

1 Motion in Space

Definition 1.1 Suppose that the position of an object moving in 3D space is given by r(t) = 〈x(t), y(t), z(t)〉, for
t ≥ 0. Then, the velocity of the object is v(t) := r′(t) = 〈x′(t), y′(t), z′(t)〉, the speed of the object is |r′(t)|, and
the acceleration of the object is a(t) := v′(t). The definitions for 2D motion are completely analogous.

Definition 1.2 Suppose that r(t) is such that r′(t) is a constant vector (independent of t). Then, we say that r
models uniform (meaning constant velocity) straight-line motion. Suppose that |r(t)| = C, C a constant, for all
t. Then, we say that r models circular motion if in 2D or spherical motion if in 3D. In this case, r · v = 0.

1.1 Finding velocity and position from acceleration

In this subsection, we consider the case of 2D projectile motion (e.g. parabolic motion of a falling object) where the
only force acting on the object is gravity, using the x-axis for horizontal motion and y-axis for vertical motion. As in
first semester calculus, to deduce the position function r from the velocity function v and the velocity function from
the acceleration function a, all you need are, respectively, the initial conditions r(0) = 〈x0, y0〉 and v(0) = 〈u0, v0〉,
since these allow you to solve for the integration constants from the antiderivatives for v and a. By Newton’s Second
Law, gravitational force is F = ma = 〈0,−mg〉 so a = 〈0,−g〉, where g ≈ 9.8m/s2 ≈ 32ft/s2. Therefore, by 12.6
methods, v(t) = 〈u0,−gt+ v0〉 and r(t) = 〈u0t+ x0,− 1

2
gt2 + v0t+ y0〉.

Definition 1.3 If we suppose further that the object is launched at an angle α above the horizontal with initial speed
|v(0)| (also denoted |v0|), then v(0) = 〈u0, vo〉 = 〈|v0| cosα, |v0| sinα〉. The time of flight T is the amount of time

it takes for the object to hit the ground from its initial launch, and it’s given by T := 2|v0| sinα
g

. The range of the

projectile is the horizontal distance it travels before hitting the ground, and it’s given by x(T ) = |v0|2 sin(2α)
g

. The

maximum height of the projectile is y(T
2

) = (|v0|2 sinα)2

2g
.

Note 1.4
1. Note that only |v0| and α are needed to find v(0).
2. In the case that an object is launched above the ground, for simplicity we typically take the launching point to be
the origin rather than treating the ground level as y = 0.
3. 3D motion is modeled similarly with r(t) = 〈x(t), y(t), z(t)〉, a(t) = 〈0, 0,−g〉 the acceleration due to gravity, the
x− and y-axes used to model the compass directions as usual and z-axis used to model vertical movement.
4. If other forces besides gravity are present, they’ll produce other forms of acceleration on the object. Add all these
accelerations together to get a net acceleration function from which one deduces the velocity and position functions
for the projectile by taking antiderivatives and applying initial conditions.

2 Lengths of Curves

Definition 2.1 Let r(t) = 〈f(t), g(t), h(t)〉 be a parametrized curve traversed once (no part of the path retraced) for
a ≤ t ≤ b, and suppose that f ′, g′, and h′ are continuous. The arc length of the curve between (f(a), g(a), h(a))
and (f(b), g(b), h(b)) is

L :=

∫ b

a

√
f ′(t)2 + g′(t)2 + h′(t)2dt =

∫ b

a

|r′(t)|dt.

One physical application of this formula is that if r(t) is the position function for a moving object, then L is the
distance traveled from time a to time b.

Corollary 2.2 When dealing with a curve r = f(θ) with a polar description in 2D, if f has a continuous derivative
in the interval [α, β], then the arc length of the polar curve r = f(θ) is

L =

∫ β

α

√
(f(θ))2 + (f ′(θ))2 dθ.

WARNING 2.3 If a problem tells you to solve for arc length and you end up with an integral you have no idea how
to solve, odds are you set up the integral wrong. Check your formulas again to look for potential errors in your setup.
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Definition 2.4 If r(t) describes a smooth curve for t ≥ a, then the formula for arc length is given by

s(t) =

∫ t

a

|r′(u)| du.

If |r′(t)| = 1 for all t ≥ a, then the parameter t corresponds to arc length. Notice that by the Fundamental
Theorem of Calculus ds

dt
= |r′(t)|.

Procedure 2.5 To parametrize a curve by arc length, use the above formula to obtain a formula for arc length
s(t) equal to a function of t. From there, treat s(t) as a variable s and use the equation to solve for t in terms of s.
From there, substitute t as a function of s into the formula for r(t).

3 Basic Differential Geometry of Curves

In this section, we consider a curve C parametrized by r(t) with velocity v = r′. Consider an arbitrary time t and a
point P = r(t). s will always denote the arc length, as defined in the previous section.

Definition 3.1 Curvature κ is a measure of the instantaneous rate of change of the unit tangent vector T(t) as
one goes along the length of a smooth parametrized curve (i.e. arc length s) at a given point. Since most curves aren’t
parametrized by arc length, κ(s) = |dT/ds| isn’t a practical computation, so you’ll usually want to use either of the
formulas

κ(t) :=
|T′(t)|
|r′(t)| =

|r′ × r′′|
|r′|3

to determine the curvature.

Definition 3.2 The principal unit normal vector N determines the direction in which a curve turns at a point;
specifically, it points in the direction of dT

ds
, where s is the arc length. Given most curves are NOT parametrized by

arc length, you’ll want to use the formula

N(t) =
dT/dt

|dT/dt|
to determine the principal unit vector at time t. Note that:
1. T and N are orthogonal.
2. N points to the inside of the curve, which is the direction that the curve is turning.

Together, since T(t) and N(t) determine the change in speed and change in direction, respectively, of a curve at
a point, they determine together the acceleration a = r′′ of the curve at the given point. Hence, the acceleration
vector may be decomposed as a = aNN + aTT, where aN := κ|v|2 = |v×a|

|v| is the normal component of a and

aT := d2s
dt2

(the second derivative of arc length, s(t)) is the normal component of a.

Definition 3.3 Together, T(t) and N(t) determine a plane at the point P = r(t) called the osculating plane. The
plane’s unit normal vector B := T×N called the unit binormal vector measures how quickly the curve moves away
from the osculating plane as t changes. Together, T, N, and B are called the TNB frame (also called Frenet-Serret
frame) at the time t.

Definition 3.4 The rate at which C twists out of the osculating plane at time t is the rate at which B changes
as we move along C at time t, i.e. dB

ds
. By computations in the book, dB

ds
= T × dN

ds
= −τN, where τ :=

− dB
ds
·N is called the torsion at time t. Notice dB

ds
= ( dB

dt
)/( ds

dt
) = 1

|r′(t)|
dB
dt

. Thus, conceptually, torsion is the
speed at which C moves out of the osculating plane. This is analogous to how curvature measures the rate at which
the curve turns within the osculating plane. The sign of τ depends on technical matters (whether a curve is “left-
handed” and “right handed”) that we won’t consider in this course.
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