
Sections 12.4-12.6: Cross Products, Vector-valued functions, and their Calculus Reeve Garrett

1 The Cross Product

Notation 1.1 In this course, we’ll abide by the notational convention

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

an1 an2 an3 · · · ann


to denote an (n× n)-matrix and

det(A) = |A| =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

an1 an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
to denote its determinant.

Definition 1.2 Given vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 in R3 (note that this ONLY works for
vectors in R3), their cross product is the vector defined as

u× v =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ i− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣k
where i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉 are treated just like numbers in the (3 × 3)-matrix
determinant and as vectors in the expansion given in the right most side of the 2 equalities above.

WARNING 1.3 While the cross product has many other properties typically associated with products, it is
NOT commutative; it is anticommutative, meaning u× v = −(v × u).

Theorem 1.4 Let u and v be two nonzero vectors in R3.
1. |u× v| = |u||v| sin(θ), where 0 ≤ θ ≤ π is the angle between u and v.
2. Assuming the right hand coordinate system (positive x is out, positive y is right, and positive z is up),

the direction of u × v is determined as follows: place the vectors tail to tail, then let the knuckles on your
right hand be that pivot point with v represented as the back of your hand and u represented as the lower
segment of your fingers; in this case, pointing your thumb outward (“thumbs up” or “thumbs down”), u× v
is pointed in the direction of your thumb.

3. u× v = 0 if and only if u and v are parallel (scalar multiples).
4. Treating u and v as two sides of a parallelogram, the area of that parallelogram is |u× v|.
5. i× j = k, j× k = i, and k× i = j. To help you remember this, the book includes this circle:

2 Basic Physical Applications of the Cross Product

2.1 Torque

Torque is the twisting force generated by a force acting at a distance from a pivot point O. Typically, we
consider torque as the force τ screwing in a bolt that’s generated by moving a wrench that has direction
and length (from the end O to the other end P ) given by a vector r (at a fixed time) with an external force
F (usually pressing the wrench up or down at an angle to make it twist). Typically, we let θ be the angle
that F forms with r. Then, the torque is τ = r× F. By bullet 1 in Theorem 1.4 on this handout, torque
maximizes when θ = π/2.
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2.2 Magnetic Force on a Moving Charge

Suppose a charge of q coulombs moves at a velocity given by the vector v at the point P , where it enters a
magnetic field moving with direction and strength (in teslas, abbreviated T) given by the vector B (at this
point). Then, the force expereienced by the charge moving through the magnetic field is given by the vector
F = q(v ×B).

3 Vector-Valued Functions

Definition 3.1 A function r : R → R3 given by r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k may be
viewed either as a set of three parametric equations describing a curve in 3D or a vector-valued function,
meaning for each real number t, we think of r(t) (as above) as a vector in R3. The domain of a vector-
valued function is the set of all t for which x(t), y(t), and z(t) are all defined. The orientation (also called
positive orientation) of a curve is the direction the points r(t) move as t increases.

The equation of a line passing through a point P (x0, y0, z0) in the direction of a vector v = 〈a, b, c〉 is
r(t) = 〈x0, y0, z0〉+ tv = 〈x0 + at, y0 + bt, z0 + ct〉, for −∞ < t <∞.

4 Analysis of Vector-Valued Functions

4.1 Limits and Continuity

Definition 4.1 Let a be a number. Consider the vector-valued function r(t) = 〈f(t), g(t), h(t)〉, and suppose
that lim

t→a
f(t) = L1, lim

t→a
g(t) = L2, and lim

t→a
h(t) = L3. Then, the limit as t approaches a is the vector

L = 〈L1, L2, L3〉. If lim
t→a

r(t) = r(a), then we say r is continuous at t = a. For an interval I, we say r is

continuous on I if it is continuous at all a in I.

4.2 Derivatives, Tangent Vectors, and Integrals

Definition 4.2 Let r : R→ R3 be defined by r(t) = 〈f(t), g(t), h(t)〉 be a vector-valued function, where f , g,
and h are differentiable functions on an interval (a, b). Then, r′, the derivative of r on (a, b), is defined as
r′(t) = 〈f ′(t), g′(t), h′(t)〉, and for each c in (a, b), provided r′(c) 6= 0, we call r′(c) the tangent vector at
the point r(c). With this (nonzero) tangent vector, if we divide it by its length, we obtain the unit tangent
vector at t = c.

In general, the tangent vectors to a curve move in the direction of the positive orientation
and vice-versa.

The derivatives of vector valued functions satisfy the usual rules from Calculus I, but the difference is
there are 3 product rules (satisfying the obvious analogues to the scalar-valued product rule), one for each
of the function forms f(t)r(t) (where f(t) is scalar-valued and differentiable, meaning f(t)r(t) is a vector-
valued function), u(t) · v(t) (dot product of vector-valued functions, which is a scalar-valued function), and
u(t)×v(t) (cross-product of vector-valued functions, which is a vector-valued function), and the Chain Rule
applies to one form: u(f(t)) where u is vector-valued and f is scalar-valued.

Integrals are similarly evaluated component-wise.

Definition 4.3 For the vector-valued function r(t) = 〈f(t), g(t), h(t)〉, where the antiderivatives of f , g, and
h are respectively F , G, and H, the antiderivative or indefinite integral of r is∫

r(t)dt = 〈F (t), G(t), H(t)〉+ 〈C1, C2, C3〉,

where C1, C2, and C3 are arbitrary constants. Letting [a, b] be an integral on which f , g, and h are integrable
on, the definite integral of r on [a, b] is∫ b

a

r(t) =

〈∫ b

a

f(t)dt,

∫ b

a

g(t)dt,

∫ b

a

h(t)dt

〉
.
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