1 Definitions and Properties of Vectors

Note 1.1 Everything is defined here in two dimensions, but the corresponding definitions in three dimensions are identical.

Definition 1.2 A vector is a quantity with both length and direction, given by a tuple of real numbers (in this course, a pair or triple), except for the **0** vector which has zero length and no defined direction. Geometrically, a vector $\mathbf{x} = \langle x_1, x_2 \rangle$ is depicted as an arrow starting at a point and ending at another point that's x_1 in the x-direction and x_2 in the y-direction away from the starting point, and we draw the point of the arrow at that end point. The start is called the **tail** of the vector, and the point of the arrow is usually called the **head** of the vector. Per the book's notation, we'll denote vectors with boldface letters. A **scalar** is a number. **Scalar multiplication** is defined as follows: given a vector $\mathbf{x} = \langle x_1, x_2 \rangle$ and scalar c, $c\mathbf{x} = \langle cx_1, cx_2 \rangle$. We call $c\mathbf{x}$ a **scalar multiple** of \mathbf{x} , and if two vectors are scalar multiples of each other, we call the vectors **parallel**.

Definition 1.3 A vector whose tail is at the origin is called a **position vector**. We also say such a vector is in **standard position**.

Definition 1.4 Given a vector $\mathbf{x} = \langle x_1, x_2 \rangle$ in 2 dimensional space (denoted \mathbb{R}^2), its **magnitude** is defined as $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2}$. Magnitude is similarly defined in 3D (denoted \mathbb{R}^3). For such an \mathbf{x} , its corresponding unit vector is $\mathbf{x}_u = \frac{1}{|\mathbf{x}|}\mathbf{x}$.

Procedure 1.5 Given vectors $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, their sum is defined as $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$ and is interpreted geometrically as completing the triangle whose edges are \mathbf{a} and \mathbf{b} , where the tail of \mathbf{b} is positioned at the head of \mathbf{a} , as depicted in the image below.

2 Basic Physical Applications

2.1 Boats and rivers

Given a stream with velocity given by the vector \mathbf{w} and a boat moving in the water, if we denote by \mathbf{v}_w the velocity of the boat relative to the water and denote by \mathbf{v}_g the velocity of the boat relative to the shore, we relate these quantities by the equality

$$\mathbf{v}_g = \mathbf{v}_w + \mathbf{w}.$$

The typical convention is to use the compass directions as our coordinate plane (east as the positive x-direction, north as the positive y direction, etc.). Moreover, speed of a vector $\mathbf{v} = \langle x, y \rangle$ is given by $|\mathbf{v}|$ and direction of \mathbf{v} is given by the angle θ_v determined by v with respect to the positive x-axis; this is computed as either $\tan^{-1}(y/x)$ or $\tan^{-1}(y/x) + 180^\circ$, depending on the direction of \mathbf{v} .

2.2 Force Vectors

Suppose a force **F** is applied to an object (the book uses the example of a child pulling a wagon at a diagonal) with magnitude $|\mathbf{F}|$ and direction θ relative to the positive x-axis. Then, **F** is given by $\mathbf{F} = \langle |\mathbf{F}| \cos(\theta), |\mathbf{F}| \sin(\theta) \rangle$. If a combination of forces $\mathbf{F}_1, ..., \mathbf{F}_n$ are applied to an object so that the object doesn't move, i.e. $\mathbf{F}_1 + \cdots + \mathbf{F}_n = \mathbf{0}$, then we say the object is at **equilibrium**.

2.3 Flight in crosswinds

We abide by the usual convention for the compass in the xy-plane and abide by the convention that the positive z direction is positive altitude. Suppose a plane is flying with velocity in calm air given by \mathbf{v}_a and

velocity relative to the ground given by \mathbf{v}_g . Furthermore, suppose that a crosswind is given by the vector \mathbf{w} and downdraft is given by the vector \mathbf{d} . Then, these quantities are related by the equality

$$\mathbf{v}_g = \mathbf{v}_a + \mathbf{w} + \mathbf{d}$$

3 Particulars to 3D

Note 3.1 We will adopt the convention of using the right-handed coordinate system: the positive z direction is up, the positive y direction is to the right on the page, and the positive x direction is pointing out from the page.

Distance in 3D space is defined just as in 2D space but with the square of the difference in z coordinates included in the sum.

Definition 3.2 A sphere of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are distance r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x - a)^2 + (y - b)^2 + (z - c)^2 = r^2$. An open ball of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are of distance strictly less than r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x - a)^2 + (y - b)^2 + (z - c)^2 < r^2$. A closed ball of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are of distance at most r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x - a)^2 + (y - b)^2 + (z - c)^2 < r^2$. A closed ball of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are of distance at most r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x - a)^2 + (y - b)^2 + (z - c)^2 \le r^2$. In this chapter, we just call a closed ball a ball.

4 The Dot Product

Definition 4.1 Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, their **dot product** is $\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3$. Note that this is ALWAYS a scalar; we'll later learn about cross-products, and those are always vectors. \mathbf{u} and \mathbf{v} are **orthogonal** or **normal** (meaning perpendicular to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Fact 4.2 Given two vectors \mathbf{u} and \mathbf{v} , the angle θ between them is given by

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}.$$

Definition 4.3 Given two vectors \mathbf{u} and $\mathbf{v} \neq \mathbf{0}$, the orthogonal projection of \mathbf{u} onto \mathbf{v} , denoted $proj_{\mathbf{v}}\mathbf{u}$, is given by the vector

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v},$$

and it always has length

$$\operatorname{scal}_{v} \mathbf{u} = |\mathbf{u}| \cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|},$$

where θ is the angle between \mathbf{u} and \mathbf{v} . We call $\operatorname{scal}_{v}\mathbf{u}$ the scalar component of u in the direction of v. proj_v \mathbf{u} is the vector in the direction of \mathbf{v} that one adds to a vector perpendicular to \mathbf{v} to get the vector \mathbf{u} .

4.1 Physical Applications of the Dot Product

Definition 4.4 If a force \mathbf{F} (in Newtons) is applied to an object and produces a displacement \mathbf{d} (in meters), then the work done by the force is $W = \mathbf{F} \cdot \mathbf{d}$ (in Joules).

Definition 4.5 Suppose an object rests on an inclined plane of angle θ from the *x* direction and **F** is the force of gravity (acting straight down) on the object. Then, if the vector **v** is in the direction of the plane and **n** is in the direction perpendicular to the plane (we call this a **normal vector**), then $\mathbf{p} = \text{proj}_{\mathbf{v}} \mathbf{F}$ is **parallel component** of **F** and $\mathbf{N} = \text{proj}_{\mathbf{n}} \mathbf{F}$ is the **normal component** of **F**. Note that $\mathbf{p} \cdot \mathbf{N} = 0$ and $\mathbf{F} = \mathbf{p} + \mathbf{N}$.