1 Definitions and Properties of Vectors

Note 1.1 Everything is defined here in two dimensions, but the corresponding definitions in three dimensions are identical.

Definition 1.2 A vector is a quantity with both length and direction, given by a tuple of real numbers (in this course, a pair or triple), except for the $\mathbf{0}$ vector which has zero length and no defined direction. Geometrically, a vector $\mathbf{x}=\left\langle x_{1}, x_{2}\right\rangle$ is depicted as an arrow starting at a point and ending at another point that's x_{1} in the x-direction and x_{2} in the y-direction away from the starting point, and we draw the point of the arrow at that end point. The start is called the tail of the vector, and the point of the arrow is usually called the head of the vector. Per the book's notation, we'll denote vectors with boldface letters. A scalar is a number. Scalar multiplication is defined as follows: given a vector $\mathbf{x}=\left\langle x_{1}, x_{2}\right\rangle$ and scalar c, $c \mathbf{x}=\left\langle c x_{1}, c x_{2}\right\rangle$. We call cx a scalar multiple of \mathbf{x}, and if two vectors are scalar multiples of each other, we call the vectors parallel.

Definition 1.3 A vector whose tail is at the origin is called a position vector. We also say such a vector is in standard position.

Definition 1.4 Given a vector $\mathbf{x}=\left\langle x_{1}, x_{2}\right\rangle$ in 2 dimensional space (denoted \mathbb{R}^{2}), its magnitude is defined as $|\mathbf{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Magnitude is similarly defined in $3 D$ (denoted \mathbb{R}^{3}). For such an \mathbf{x}, its corresponding unit vector is $\mathbf{x}_{u}=\frac{1}{|\mathbf{x}|} \mathbf{x}$.

Procedure 1.5 Given vectors $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$, their sum is defined as $\mathbf{a}+\mathbf{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle$ and is interpreted geometrically as completing the triangle whose edges are \mathbf{a} and \mathbf{b}, where the tail of \mathbf{b} is positioned at the head of \mathbf{a}, as depicted in the image below.

2 Basic Physical Applications

2.1 Boats and rivers

Given a stream with velocity given by the vector \mathbf{w} and a boat moving in the water, if we denote by \mathbf{v}_{w} the velocity of the boat relative to the water and denote by \mathbf{v}_{g} the velocity of the boat relative to the shore, we relate these quantities by the equality

$$
\mathbf{v}_{g}=\mathbf{v}_{w}+\mathbf{w}
$$

The typical convention is to use the compass directions as our coordinate plane (east as the positive x -direction, north as the positive y direction, etc.). Moreover, speed of a vector $\mathbf{v}=\langle x, y\rangle$ is given by $|\mathbf{v}|$ and direction of \mathbf{v} is given by the angle θ_{v} determined by v with respect to the positive x -axis; this is computed as either $\tan ^{-1}(y / x)$ or $\tan ^{-1}(y / x)+180^{\circ}$, depending on the direction of \mathbf{v}.

2.2 Force Vectors

Suppose a force \mathbf{F} is applied to an object (the book uses the example of a child pulling a wagon at a diagonal) with magnitude $|\mathbf{F}|$ and direction θ relative to the positive x-axis. Then, \mathbf{F} is given by $\mathbf{F}=$ $\langle | \mathbf{F}|\cos (\theta),|\mathbf{F}| \sin (\theta)\rangle$. If a combination of forces $\mathbf{F}_{1}, \ldots, \mathbf{F}_{n}$ are applied to an object so that the object doesn't move, i.e. $\mathbf{F}_{1}+\cdots+\mathbf{F}_{n}=\mathbf{0}$, then we say the object is at equilibrium.

2.3 Flight in crosswinds

We abide by the usual convention for the compass in the $x y$-plane and abide by the convention that the positive z direction is positive altitude. Suppose a plane is flying with velocity in calm air given by \mathbf{v}_{a} and
velocity relative to the ground given by \mathbf{v}_{g}. Furthermore, suppose that a crosswind is given by the vector \mathbf{w} and downdraft is given by the vector \mathbf{d}. Then, these quantities are related by the equality

$$
\mathbf{v}_{g}=\mathbf{v}_{a}+\mathbf{w}+\mathbf{d}
$$

3 Particulars to 3D

Note 3.1 We will adopt the convention of using the right-handed coordinate system: the positive z direction is up, the positive y direction is to the right on the page, and the positive x direction is pointing out from the page.

Distance in 3D space is defined just as in 2D space but with the square of the difference in z coordinates included in the sum.

Definition 3.2 A sphere of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are distance r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$. An open ball of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are of distance strictly less than r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}<r^{2}$. A closed ball of radius r centered at a point (a, b, c) is the set of all points (x, y, z) that are of distance at most r away from (a, b, c), i.e. the points (x, y, z) satisfying $(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \leq r^{2}$. In this chapter, we just call a closed ball a ball.

4 The Dot Product

Definition 4.1 Given two vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, their dot product is $\mathbf{u} \cdot \mathbf{v}=$ $u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$. Note that this is ALWAYS a scalar; we'll later learn about cross-products, and those are always vectors. \mathbf{u} and \mathbf{v} are orthogonal or normal (meaning perpendicular to each other) if $\mathbf{u} \cdot \mathbf{v}=0$.

Fact 4.2 Given two vectors \mathbf{u} and \mathbf{v}, the angle θ between them is given by

$$
\cos (\theta)=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Definition 4.3 Given two vectors \mathbf{u} and $\mathbf{v} \neq \mathbf{0}$, the orthogonal projection of \mathbf{u} onto \mathbf{v}, denoted $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, is given by the vector

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
$$

and it always has length

$$
\operatorname{scal}_{v} \mathbf{u}=|\mathbf{u}| \cos (\theta)=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}
$$

where θ is the angle between \mathbf{u} and \mathbf{v}. We call $\operatorname{scal}_{v} \mathbf{u}$ the scalar component of \boldsymbol{u} in the direction of \boldsymbol{v}. $\operatorname{proj}_{v} \mathbf{u}$ is the vector in the direction of \mathbf{v} that one adds to a vector perpendicular to \mathbf{v} to get the vector \mathbf{u}.

4.1 Physical Applications of the Dot Product

Definition 4.4 If a force \mathbf{F} (in Newtons) is applied to an object and produces a displacement \mathbf{d} (in meters), then the work done by the force is $W=\mathbf{F} \cdot \mathbf{d}$ (in Joules).

Definition 4.5 Suppose an object rests on an inclined plane of angle θ from the x direction and \mathbf{F} is the force of gravity (acting straight down) on the object. Then, if the vector \mathbf{v} is in the direction of the plane and \mathbf{n} is in the direction perpendicular to the plane (we call this a normal vector), then $\mathbf{p}=\operatorname{proj}_{\mathbf{v}} \mathbf{F}$ is parallel component of \mathbf{F} and $\mathbf{N}=\operatorname{proj}_{\mathbf{n}} \mathbf{F}$ is the normal component of \mathbf{F}. Note that $\mathbf{p} \cdot \mathbf{N}=0$ and $\mathbf{F}=\mathbf{p}+\mathbf{N}$.

