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Abstract A phylogenetic investigation of the autosporic
chlorophycean alga species Selenastrum capricornutum
using the small subunit (SSU) rRNA gene revealed the
unusual presence of six group IC1 introns. Previous
studies showed that numerous green algal taxa contain
group IC1 introns. However, whereas some algal species
harbor multiple introns in a single ribosomal gene, none
have contained as many as S. capricornutum. Three of
the S. capricornutum introns are located at conserved
algal intron sites and the remaining three are located at
novel eukaryotic positions. The SSU rRNA genes and
their introns have been sequenced and putative second-
ary structures are proposed for the introns. Also, their
similarity to other group IC1 introns from algal, fungal,
and viral sources is investigated. Results suggest the
initial presence of introns at conserved locations, fol-
lowed by duplication and insertion to novel positions
within the SSU rRNA gene.
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Introduction

Group I introns have been found in a wide variety of
organisms, from eubacterial genomes to the organellar
and ribosomal RNA genes of eukaryotes. These introns
are characterized by a conserved secondary structure
that is involved in excision of the intron following
transcription (Burke and RajBhandary 1982; Michel
et al. 1982; Cech 1988; Lambowitz and Belfort 1993 and
references therein). The observed covariation of substi-
tutions in these introns and the presence of short con-
served regions of primary sequence suggested a
proposed secondary structure. Based on the expanding
database of sequenced introns (Damberger and Gutell
1994) tertiary structures for these molecules were pro-
posed (Cech et al. 1994). Also of great interest was the
discovery that some group I introns are unique in that
they may act as ribozymes to catalyze their own splicing
reactions, which are less or non-dependent on trans-
factors for excision (Cech 1986, 1988, 1990). In
eukaryotes, group I introns were reported in the rRNA
genes of amoebae, fungi, acellular slime molds, and al-
gae (Cech 1988; Kuhsel et al. 1990; Wilcox et al. 1992;
Belfort 1993; DeJonckheere 1994; Gast et al. 1994;
Bhattacharya et al. 1996a; Schroeder-Diedrich et al.
1998; Müller et al. 2001). The insertion positions of these
introns within the small subunit ribosomal (SSU rRNA)
gene appeared to be conserved in those organisms that
contained them (Bhattacharya et al. 1996b). However,
as more introns were discovered, novel insertion loca-
tions were reported (Gargas et al. 1995; Müller et al.
2001). The reconstruction of the evolutionary history of
these group I introns is complicated by the apparent
ability of some to transpose themselves by horizontal or
vertical transmission (Sogin et al. 1986; Van Oppen et al.
1993; Lonergran and Gray 1994; Vaughn et al. 1995;
Haugen et al. 1999; Bhattacharya et al. 2001; Nikoh and
Fukatsu 2001; Tanabe et al. 2002). Here, we report the
discovery of six group I introns (which lack open read-
ing frames) located in the nuclear SSU rRNA gene of
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the autosporic green alga Selenastrum capricornutum.
Three of these introns are located in previously reported
intron positions, whereas three are in locations novel
among eukaryotes within the gene.

Materials and methods

Taxa studied

S. capricornutum (UTEX 1648), S. bibraianum (UTEX
324), and S. minutum (UTEX 326) utilized in this study
were obtained from the University of Texas, Austin
(UTEX) algal culture collection.

DNA extraction

An aliquot of ca. 25 ll of an alga culture was concentrated
by full-speed centrifugation in a table top centrifuge for
15 min and re-suspended in 50 ll of lysis buffer (50 mM
Tris-HCl, pH 7.2, 50 mM EDTA, 3% SDS, 1% beta-
mercaptoethanol). Samples were then microwaved (Sears
Kenmore model 747.9987821) on the high setting (45 s,
3·). Followingmicrowave treatment, an additional 350 ll
of lysis buffer was added and samples were incubated at
80�C for 1 h. DNA was then extracted using standard
phenol/chloroform procedures. It was precipitated using
250 ll of isoproponol and 10 ll of 3 MNaOAc. Samples
were washed in 70% EtOH and the DNA was re-sus-
pended in 30 ll of Tris-EDTA buffer.

PCR amplification and sequencing

SSU rDNA gene amplifications that included these in-
trons were generated using 3 ll of re-suspended genomic
DNA as a template in 100-ll PCR reactions. These PCR
reactions used 5 ll (10 lM stock solution) of each
amplification primer, 2.5 mM MgCl2, 1.5 mM dNTPs
and 1.0–2.5 units of Taq DNA polymerase (Gibco BRL,
Gaithersburg, Md.). SSU rDNA genes were amplified in
two overlapping halves. The 5¢ portion was amplified
using primer pair CRN5 and 1137 (Table 1) and the 3¢
half was amplified using primer pair 892C and SSU2.
Amplifications were replicated in multiple tubes. Three
microliters of pooled PCR product was sequenced
directly by double-stranded cycle sequencing, using a
commercial kit (dsDNA cycle sequencing system; Gibco
BRL). Sequencing was done using SSU rDNA primers
and primers made specifically within the various introns
(Table 1).

Phylogenetic reconstruction and data analysis

The primary sequences of the group I introns studied
here were aligned with other group I intron sequences,
using the ESEE (Eyeball sequence editor) sequence

alignment program for the personal computer (Cabot
and Beckenbach 1989). Phenetic analyses were carried
out using the MEGA2 (Molecular evolutionary genetic
analysis) phylogenetic reconstruction programs (Kumar
et al. 2001). Distances were calculated using a Kimura 2
parameter model and phylogenetic gene tree recon-
struction was performed using the neighbor-joining
algorithm method in MEGA. Proposed secondary
structures of S. capricornutum introns were produced by
comparison with the proposed secondary structure of
group I introns of Cech et al. (1994). Intron name des-
ignations follow the nomenclature proposed by Johan-
sen and Haugen (2001).

Results

The PCR amplicons for the SSU rRNA gene of S. cap-
ricornutum were significantly larger than those of algae
that lacked introns in the SSU rRNA gene (Fig. 1). This
was observed in multiple PCR amplifications from
repeated extractions and also from separate culture
orders from UTEX. The two other Selenastrum species
did not produce PCR products of anomalous size;
and they were not characterized further for the pres-
ent study. Sequencing of the larger PCR product of

Table 1 Sequencing and amplification primers for S. capricornutum
SSU rRNA gene. Primers shown are those designed in our labo-
ratory for algal amplification and sequencing. Numbered primers
indicate the approximate location of the primer in the SSU rRNA
gene. Primers followed by a capital C are forward primers
(5¢ fi 3¢). Those without a C designation are reverse primers
(3¢ fi 5¢). All primer sequences are presented 5¢ fi 3¢

Primer Sequence Orientation

CRN5 tggttgatcctgccagtag Forward
18S59 tgaaactgcgaatggctc Forward
In174.1a cttcccacagacccacattgc Reverse
In174.2a tccgggagcagacggtcagac Reverse
170 gcatgtattagctctaga Reverse
373 aggctccctctccggaatc Reverse
373C gattccggagagggagcct Forward
570 gcattggagctggaattac Reverse
570C gtaattccagctccaatagc Forward
892 ccaagaatttcacctctgac Reverse
892C gtcaaggtgaaattcttgg Forward
In943.1Ca agaacagggatgatgggcagc Forward
1137 gtgcccttccgtcaat Reverse
1137C aattgacggaagggcaccacc Forward
PCR2 gaaacttaaaggaattga Forward
In1120.1a cgacaaaagtcctctcacacg Reverse
In1120.2Ca ttgcaaccggctggcgacacc Forward
1315 ccggaaatcaacctgacaaggc Reverse
1262 gaacggccatgcaccac Reverse
1262C gtggtgcatggccgttctta Forward
1200 gggcatcacagacctg Reverse
1200C caggtctgtgatgccc Forward
In1512.1Ca gggtacggtaataatgcaggtgg Forward
1/F cacaccgcccgtcg Forward
SSU2 ccgcggccgcggatcctgatccctccgcaggttcac Reverse

aThese primers are located within an intron; and the number des-
ignation given for the primer corresponds to the intron inserted at
that location
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S. capricornutum produced seven SSU rDNA primary
exon regions and six intervening sequences (introns).
Comparison of the intervening sequences with other
introns in GenBank suggested that these were all group
IC1 introns. The subset IC1 is a subdivision of the group
I introns that is based on intron primary sequence and
secondary structure characteristics. The seven SSU exon
sequences and the six intron primary sequences were
submitted to GenBank under accession number
AF169628.

These introns are located at the following positions in
the SSU gene (all positions given are relative to the
primary sequence of the SSU ribosomal gene of Esc-
herichia coli). These introns are designated: Scap.S165,
Scap.S174 (both of which are close to the 5¢ end of the
gene), Scap.S943, Scap.S1046, Scap.S1120, and
Scap.S1512 the last of which is close to the 3¢ end of the
gene. Three of these positions (Scap.S943, Scap.S1046,
Scap.S1512) are positions where group I introns have
been found in other algal taxa. The remaining three in-
trons (Scap.S165, Scap.S174, Scap.S1120) are located at
novel SSU rDNA intron locations among eukaryotes,
including algae.

The proposed secondary structures of the six introns
of S. capricornutum are presented in Fig. 2. All of the
introns have the characteristic stem and loop structures
of other group IC1 introns. Differences in the length of
stems P5 and P9 are the major sources of variation
among the introns. The common GAAA tetraloop in the
P5b loop is observed in all six introns (Pley et al. 1994).

Primary sequence homology between introns that are
found at different insertion locations in various taxa is
limited. However, certain regions are relatively highly
conserved in all group I introns. These conserved se-
quence regions are referred to as P, Q, R, and S (Cech
1988). They act to maintain the base pairing required to
produce a conserved tertiary structure needed for effi-
cient intron excision. Therefore, in order to examine the
phylogenetic relationships of the six introns found here
to other group I introns, we aligned their P, Q, R, and S
regions with the same regions from a number of other

introns from SSU and large subunit ribosomal genes. In
addition, P, Q, R, and S conserved regions from group I
introns located in the tRNALEU of chloroplast and eu-
bacterial genomes were included as an outgroup. The
alignment resulted in a data matrix of 51 conserved sites.

Phenetic analysis of this conserved region sequence
data using the neighbor-joining reconstruction algo-
rithm produced the intron gene tree presented in Fig. 3.
Results of this analysis show that the S. capricornutum
intron located at position 1,046 falls into a clade with
introns from other taxa that are inserted at this position.
However, introns at the other two previously reported
positions (Scap.S943, Scap.S1512) do not group with
other introns sharing the same insertion location. In
addition, the introns located at the novel positions of
Scap.S165, Scap.S174, and Scap.S1120 are similar to the
S. capricornutum Scap.S943 intron.

Discussion

Group I introns have a wide phylogenetic distribution.
They are found in fungi, algae, amoebae, and in plant
mitochondrial and chloroplast genes. They have also
been observed in eubacteria and bacteriophage genomes.
As demonstrated here, nuclear introns can be found in
some of the normally intron-lacking SSU andLSU rRNA
genes. The number of introns observed in a particular
ribosomal RNA gene has been found to vary from as few
as one in various taxa, to as many as nine, in some fungal
taxa. In this study, we report the unusual occurrence of a
large number on introns in the nuclear rRNA gene. The
lack of significant phenetic clustering of introns from
the same position within the SSU rRNA gene due to
the small number of sites examined using conserved
sequences of P, Q, R, and S, does not allow for a statis-
tical evaluation of the gene tree produced. Nonetheless,
some of the introns from various taxa (for example, the
introns located at position 1,046) do cluster together even
with this limited data set. Also, introns from Acantha-
moeba lenticulata at position 943 also cluster together.

Two sets of the S. capricornutum introns (Scap.S174/
Scap.S1120, Scap.S165/Scap.S943) are most closely re-
lated to each other in these analyses. Three of these
positions, the locations of Scap.S174, Scap.S165, and
Scap.S1120, are novel whereas the location of Scap.S943
is observed as an intron insertion site in many other
taxa. These novel intron insertion locations, coupled
with their phenetic similarity to the intron found at
location 943, may suggest an ancestral presence of an
intron at the 943 position, followed by duplication to the
susceptible novel locations. However, as mentioned
above, no introns are found in two other species of Se-
lenastrum examined, suggesting that the introns were not

Fig. 1 PCR products produced using primers CRN5 and 1137,
which amplify the 5¢ half of the SSU rDNA gene. Lanes 1, 2, left
Products produced using control algal DNA, representing the
expected size of the product (1,140 bp). Lane 3, M 1 kb marker.
Lanes 4, 5, right PCR products produced using the same primers in
S. capricornutum (ca. 1,950 bp)

Fig. 2 S. capricornutum group I intron proposed secondary
structure. Exon sequences are in lowercase. Putative intron stems
are identified, e.g., P6a

c
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present in the common ancestor of Selenastrum taxa and
were acquired following the divergence of Selenastrum
taxa. Alternatively, the introns were present in the
ancestral taxa and have subsequently been lost in the
other two Selenastrum taxa examined. An examination
of this question will require the analysis of more Sele-
nastrum isolates and other closely related taxa (Krienitz
et al. 2001).

The remaining two introns are located at the previ-
ously reported insertion positions of 1,046 and 1,512.
While insertions at both positions have been reported,
introns found at 1,046 are more common. These two
introns are phylogenetically relatively closely related to
one another in the current study. In the case of these two
introns, it is possible that they also represent an ances-
tral intron insertion followed by duplication to a sus-

Fig. 3 Group I intron phylogenetic tree. Conserved P, Q, R, and S
regions of group I introns were aligned and distances were calculated
using a Kimura 2 parameter model. Phylogenetic gene tree
reconstruction was performed using the neighbor joining algorithm
method in MEGA. Intron insertion locations are shown in
parentheses following the species name. LSU Large subunit, LSU1
large subunit intron 1, LSU2 large subunit intron 2. Percent
dissimilarity is shown on the scale bar below figure. Additional
introns found in the SSU and LSU ribosomal genes used in the tree
reconstruction (intron position, GenBank accession number listed
after the species name, in parentheses) are: Characium saccatum
(1512, M84319), Dunaliella salina (943, M84320), D. parva (943,
M62998; Wilcox et al. 1992) Urospora pencilliformis (1512,
AB049417; Van Oppen et al. 1993) Physarum polycephalum LSU1
(L03183), P. polycephalum LSU2 (L03183; Ruoff et al. 1992),
Tetrahymena thermophila LSU (X03107; Nielsen and Engberg
1985), Chlorella ellipsoidea (1506, X63520; Krienitz et al. 1996),
Pleurastrum paucicellulare (1512, Z47997), P. paucicellulare
(943, Z47997), P. paucicellulare (1046, Z47997; Bhattacharya et al.
1996b), C. mirabilis (1506, X74000), C. leutoviridis (1053, X73998),
C. sorokiniana (323, X73993), C. saccharohipla (516, X73991),
C. sorokiniana (1046, X73993; Huss et al. 1999), Cosmarium botrytis

(1506, X77453), Mesotaenium caldariorum (1506, X75763),
Zygnemopsis circumcrinata (1506, X79495; Bhattacharya et al.
1994), Pnemocystis carnii LSU (M86760), P. carnii (1506, M86760;
Sogin and Edman 1989), Didymium iridis LSU1 (X60210), D. iridis
LSU2 (X60210; Johansen et al. 1992),Ustilago maydis (943, X62396;
DeWachter et al. 1992), Chlorella virus (D29631; Yamada et al.
1994), Gloeotilopsis planctonica (943, Z28970; Friedl and Zeltner
1994),Ankistrodesmis stipitatus (1046, X56100; Davila-Aponte et al.
1991), Chorocystis minor (1046, X89012; Krienitz et al. 1996),
Acanthamoeba lenticulata strains 407-3A (1389, U94734), JC1 (956,
U94739), 25-1 (956, U94740), NJSP (943, U94738), 118 (943,
U94736), 53-2 (943, U94737), PD2S/JD (943, U94741), and E18-2
(943, U94735; Schroeder-Diedrich et al. 1998), Naegleria andersoni
(943, Z16417;DeJonckeere 1994),A. griffini (516,U02540;Gast et al.
1994). tRNALEU introns used in alignment (withGenBank accession
number following species name, in parentheses): Bryopsis plumosa
(M61159), Anacystis R2 (M61158), Dictyota dichomata (M61161),
Ochromonas danica (M61162),Costaria costata (M55288),Vaucheria
bursata (M61165), Chlorella vulgaris (M61160), Phormidium
N182 (M61163), Syctonema PCC7110 (M61164; Kushel et al.
1990),Nicotiana tabacum (M16898; Yamada et al. 1986),Cyanphora
paradoxa (M22563; Evrard et al. 1988)
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ceptible position, or perhaps both were acquired inde-
pendently. Again, the lack of introns in the other Sele-
nastrum taxa examined currently prevents further
resolution of this question.

As the ribosomal DNA genes of more taxa are
examined, more group I introns have been found. The
accumulation of these data helps to elucidate the nature
of these genetic elements and allows us to begin to piece
together their evolutionary history. In this study we have
revealed the occurrence of an unusually large number of
group I introns found in the SSU ribosomal DNA gene
of the autosporic green algae S. capricornutum. The
origin and maintenance of these introns is not yet clear,
but as more data are obtained from other taxa, these
questions can be addressed.
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