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ABSTRACT. We begin with a summary of the prior lead statements 
of Invariant Maximality, in the Introduction. These are infinite 
statements in the rationals that are implicitly Õ0

1 sentences 
provably equivalent to Con(SRP) over WKL0. We then use the upper 
shift to give a different example again at the SRP level. We 
then strengthen it to the level of HUGE. We also present 
explicitly finite forms of all of these infinite statements. 
Thus far, only the lead infinite statements at the level of SRP 
have an existing manuscript proving their equivalence with 
Con(SRP) over WKL0. See [Fr2].   
 
1. Lead Statements in Invariant Maximality 
2. Infinite Invariant Emulations in Q: SRP,HUGE 
3. Finite Continuations in Q: SRP,HUGE 
   3.1. Finite continuations in Q[0,n]: SRP 
   3.2. Finite ultra continuations in Q: SRP 
   3.3. Finite ultra* pointed continuations in Q: HUGE  
 
1. LEAD STATEMENTS IN INVARIANT MAXIMALITY 
  
Our two lead statements for Invariant Maximality are as follows.  
  
PROPOSITION A. Every subset of Q[0,n]k has a 0;1®...®n invariant 
maximal emulation.
  
 
PROPOSITION B. Every order invariant graph on Q[0,n]k has a 
0;1®...®n invariant maximal clique.  
 
We also have the following refinements.  
 
PROPOSITION C. Every subset of Q[0,n]k has a 0;1®...®n,tail 
invariant maximal emulation.
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PROPOSITION D. Every order invariant graph on Q[0,n]k has a 
0;1®...®n,tail invariant maximal clique. 
 
Although obviously a bit more technical (with “tail”), we expect 
the latter two to play an important role in Invariant 
Maximality. Aside from the reversals being considerably easier, 
we expect strong control over the strength for fixed small k,n.   
 
As we have emphasized elsewhere, the given subset in 
Propositions A,C can be taken to be finite (or even bounded by a 
double exponential in k) without change. This remark will also 
apply to the statements in section 2.  
 
Here are the supporting definitions, which have already appeared 
in a number of places. 
  
 
DEFINITION 1.1. S is an emulation of E Í Q[0,n]k if and only if S 
Í Q[0,n]k and every element of S2 is order equivalent to an 
element of E2. S is a maximal emulation of E Í Q[0,n]k if and 
only if S is an emulation of E Í Q[0,n]k which is not a proper 
subset of any emulation of E Í Q[0,n]k.  
 
DEFINITION 1.2. A graph on a set V of vertices is (V,E) where E 
Í V2 is irreflexive and symmetric. E is the adjacency relation. 
An order invariant graph on Q[0,n]k is a graph on Q[0,n]k where 
the adjacency relation is an order invariant subset of Q[0,n]2k.  
 
DEFINITION 1.3. S Í Q[0,n]k is q1®...®qm invariant if and only 
if q1,...,qm Î Q[0,n] and for all x Î {q1,...,qm-1}k, membership 
in S remains the same if we replace q1,...,qm-1 by q2,...,qm, 
respectively. S Í Q[0,n]k is p;q1®...®qm invariant if and only 
if p,q1,...,qm Î Q[0,n] and for all x Î ({q1,...,qm-1} È Q[p,q1))k, 
membership in S remains the same if we replace q1,...,qm-1 by 
q2,...,qm, respectively. 
 
DEFINITION 1.4. S c Q[0,n]k is p;q1®...®qm,tail invariant if and 
only if for all 1 £ i £ m-1, S Í Q[0,n]k is p;qi®...®qm 
invariant.   
 
The equivalence of these statements with Con(SRP) is more or 
less now available in manuscripts. Most recently see [Fr2] for 
Proposition B. The equivalence of Propositions A,B and of C,D in 
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the Overview manuscript. the proofs from Con(SRP) are in the 
Derivation manuscript.   
 
In section 2 we present a Proposition based on the upper shift, 
which are fundamentally different than Propositions A-D and 
still competitive. We also present a version with the upper 
shift which corresponds to HUGE.  
 
In section 3 we present explicitly finite forms of these 
infinite Propositions in sections 1,2. These are all explicitly 
Õ0

2, and with basic a priori bounds, they become explicitly Õ0
1.  

 
  
2. INFINITE INVARIANT EMULATIONS IN Q: SRP,HUGE 
  
We have presented our lead infinite statements in Q of level SRP 
in section 1, for cliques and emulations in Q[0,n]k. Here we 
present some infinite statements based on a weakened form of 
maximal emulations in Qk, and a strengthened form of invariance 
using the upper shift operation instead of 0;1®...®n 
invariance.  
 
DEFINITION 2.1. Let S Í Qk. span(S) is the least k-cube Ek Ê S È 
(0}k. fld(S) is the set of all coordinates of all elements of S. 
S|£p = S Ç (-¥,p]k. S|<p = S Ç (-¥,p)k.  
  
DEFINITION 2.2. S is an emulation of E Í Qk if and only if S Í Qk 
and every element of S2 is order equivalent to an element of E2. 
x is E emulation blocked by S if and only if x Î Qk and S È {x} 
is not an emulation of E Í Qk. S is a full emulation of E Í Qk if 
and only if S is an emulation of E Í Qk where every x in 
span(S)\S is E emulation blocked by S|<max(x).   
 
Note the use of S|<max(x) instead of S here. This gives full 
emulations the flavor of a recursion rather than a simple 
maximality.  
 
Here is some background information about full emulations.  
 
THEOREM 2.1. Every subset of Qk has either the full emulation Æ 
or the full emulation {0}k. 
 
Proof: Let E Í  Qk. Suppose there is no (p,...,p) Î E. Let S = Æ. 
Then S is an emulation of E. Also x = (0,...,0) is E emulation 
blocked by S|<max(x = Æ and (0,...,0) is the unique element of 
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span(S)\S. Therefore S has the full emulation Æ. Now suppose 
there exists (p,...,p) Î E. Let S = {(0,...,0)}. Then S is an 
emulation of E. Also span(S)\S is empty, and so S is a full 
emulation of E. QED 
 
DEFINITION 2.3. E Í Qk is topped if and only if there exists 
(p,...,p) in E where p is greater than all coordinates of all 
other elements of E.  
  
THEOREM 2.2. Let E Í Qk be topped and 0 Î  B Í Q be well ordered. 
There is a unique full emulation of E with span Bk. This 
statement is provably equivalent to ATR0 over RCA0. 
 
Proof: Let E,B be as given. Suppose there are two different full 
emulations S,S’ of E with span Bk. Let x Î S have least max such 
that x Î S « x Ï S’. Suppose x Î  S\S’. Then x,x’ Î span(S) = 
span(S’), and since x Ï S’, we have that S’|<max(x) È {x} is not 
an E emulation. Hence S|<max(x) È {x} is not an emulation of E. 
This contradicts x Î S.  
  
For existence, we first modify full emulation to use fld(S)k\S 
instead of span(S)\S. It is clear how to define by transfinite 
induction on B that for all b Î B there exists a modified full 
emulation f(b) of E with field B|£ b, which includes (b,...,b). 
The inclusion uses that E is topped. We have the usual coherence 
here from the previously established uniqueness. So we obtain a 
modified full emulation S of E with span Bk wince 0 Î B. In 
particular, (0,...,0) Î S. Therefore S is a full emulation of E 
with span Bk. QED   
 
DEFINITION 2.4. The upper shift of x Î Qk is obtained by adding 1 
to all nonnegative coordinates and leaving the negative 
coordinates unchanged. The upper shift of S Í Qk is the set of 
upper shifts of its elements. We write ush(x) for the upper 
shift of x and ush(S) for the upper shift of S.   
 
PROPOSITION E. Every subset of Qk has a full emulation containing 
its upper shift. 
  
THEOREM 2.3. Proposition E is provably equivalent to Con(SRP) 
over WKL0. 
 
We now extend these ideas to reach the level of HUGE. For this, 
we need to modify emulations to pointed emulations, a weaker 
notion. A nice but not major point is that we don’t have to use 
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0 in the setup, but it does appear in the equation in 
Proposition F.  
 
DEFINITION 2.5. S is a pointed emulation of E Í Qk if and only if 
S Í Qk and for all x,y Î S with x1,...,xk,y1,...,yk-1 < yk, there 
exists z,w Î E such that (x,y),(z,w) are order equivalent. x is 
E pointed emulation blocked by S if and only if x Î Qk and S È 
{x} is not a pointed emulation of E Í Qk. S is a full pointed 
emulation of E Í Qk if and only if S is a pointed emulation of E 
Í Qk where every x Î fld(S)k\S is E pointed emulation blocked by 
S|<max(x).  
 
THEOREM 2.4. Let 0 in B Í Q be well ordered. There is a unique 
full pointed emulation of E with field B. This statement is 
provably equivalent to ATR0 over RCA0. 
 
If we use pointed emulations for Theorem 2.2 and Proposition E, 
there is no change.
  
 
PROPOSITION E’. Every subset of Qk has a full pointed emulation 
containing its upper shift.   
 
THEOREM 2.5. Proposition E’ is provably equivalent to Con(SRP) 
over WKL0. 
  
PROPOSITION F. Every subset of Qk, k ³ 3, has a full pointed 
emulation S Ê ush(S), where fld(ush(S))| £k = {p £ k: 
S(k+(1/2),0,p,...,p)}.   
  
THEOREM 2.5. Proposition F is provably equivalent to Con(HUGE) 
over WKL0.  
 
Propositions E,E’,F are implicitly Õ0

1 via the Completeness 
Theorem for first order logic. Propositions E,E’ are provably 
equivalent to Con(SRP) over WKL0 with some fixed small dimension 
k. Proposition F corresponds to the hierarchy of k-huge, k = 
1,2,... .  
 
We can view Propositions E,F in the following way: 
 
Given k ³ 1 and a rational piecewise linear function T:Qk ® Qk. 
Every subset of Qk has a full emulation S Ê T[S].  
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Given k ³ 1 and rational piecewise linear functions 
T1,...,Tr,W1,...,Wr:Qk ® Qk. Every subset of Qk has a full pointed 
emulation S such that each Ti[S] Í Wi[S]. 
 
Is there a decision procedure for the second Template above 
which is provably correct using a large cardinal hypothesis like 
j:V(k) ® V(k) or j:V(k+1) ® V(k+1)? For the first Template, 
maybe Con(SRP) is enough? At least perhaps k ® w would suffice? 
 
Of course this is very ambitious and there may not even be a 
decision procedure. But this Template very conveniently can 
drastically weakened in scope by, e.g., fixing k to be very 
small, and using only one or two pairs of very simply shaped 
piecewise linear maps even with only nonconstant coefficients 
0,1.  
 
3. FINITE EMULATIONS IN Q: SRP,HUGE 
  
In this section 3, we give our explicitly finite forms for 
Propositions A,C,E,F.  
 
DEFINITION 3.1. FS(Q) is the set of all finite subsets of Q. We 
use a,b,g with or without subscripts/superscripts for nonempty 
finite lists of elements of FS(Q) unless otherwise indicated. We 
use x,y,z,w with or without subscripts/superscripts for elements 
of FS(Q) unless otherwise indicated. We use p,q,r,s,t with or 
without subscripts/superscripts for rationals unless otherwise 
indicated. We use k,n,m,i,j with or without 
subscripts/superscripts for positive integers unless otherwise 
indicated. Èa Í  Q is the union of the terms of alpha. 
 
DEFINITION 3.2. Let x,y,z,w in FS(Q). (x,y),(z,w) are similar if 
and only if the following holds. For the unique increasing h 
from xÈy onto zÈw, we have h[x] = y and h[z] = w.  
 
This just means that (x,y) and (z,w) are the same order 
theoretically. 
 
DEFINITION 3.3. b is a continuation of a if and only if b extends 
a and every pair of terms from b is similar to some pair of terms 
from a.  
 
DEFINITION 3.4. x is a continuation blocked by b if and only if 
b,x is not a continuation of a.  
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We will be using three related notions of full continuations, 
one for each of sections 3.1,3.2,3.3.  
 
We emphasize that throughout this section 3, all objects are 
finite unless explicitly stated to be infinite.  
 
3.1. FINITE CONTINUATIONS IN Q[0,n]: SRP 
  
DEFINITION 3.1.1. b is a full continuation/n of a if and only if 
b is a continuation of a where every x Í (Èb È {0,...,n}) Ç 
Q[0,n]k that is not a term of b, is a continuation blocked by b. 
 
Note how full continuation/n involves the space Q[0,n]k and the 
preferred elements 0,...,n. 
  
THEOREM 3.1. If Èa Í Q[0,n], then a starts an infinite series of 
successive full continuations/n.   
  
Proof: By the obvious greedy algorithm. QED   
  
PROPOSITION G. If Èa Í Q[0,1) then a has a 0;1®2®...®n 
invariant full continuation/n. 
PROPOSITION H. If Èa Í Q[0,1) then a has a full continuation/n 
with a full continuation/n, both 0;1®...®n invariant.  
PROPOSITION I. If Èa Í Q[0,1) then a starts a series of full 
continuations/n of every finite length, all 0;1®...®n 
invariant. 
PROPOSITION J. If Èa Í Q[0,1) then a starts an infinite series 
of full continuations, all 0;1®...®n invariant. 
 
Note that these statements are all explicitly Õ0

2. However, there 
are obvious a priori bounds on the numerators and denominators 
used (double exponential) that make the first three statements 
explicitly Õ0

1 and the last statement implicitly Õ0
1.   

 
THEOREM 3.2. Propositions H,I are provably equivalent to 
Con(SRP) over EFA. Proposition G is provable in EFA + Con(SRP). 
Proposition J is provably equivalent to Con(SRP) over WKL0.  
 
It is natural to strengthen these statements using 
0;1®...®n,tail invariance. The results will remain unchanged.  
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3.2. FINITE ULTRA CONTINUATIONS IN Q: SRP 
 
DEFINITION 3.2.1. b is a full continuation of a if and only if b 
is a continuation of a where every x Í Èb È {0} that is not a 
term of b, is a continuation blocked by b|<max(x).  
 
Note that here we don’t use the space Q[0,n]k and 0,...,n as we 
did with full continuation/n. On the other hand, note the 
b|<max(x) instead of b.  
  
DEFINITION 3.2.2. The upper shift of x in FS(Q) results from 
adding 1 to all of its nonnegative elements and leaving its 
negative elements alone. We say that a is negative if and only 
if all of the coordinates of all of its terms are negative.  
 
Note that the upper shift of a is a if and only if a is 
negative.  
 
DEFINITION 3.2.3. beta is an ultra full continuation of a if and 
only if b is a full continuation of a, where the upper shift of 
every term of a is a term of b.  
 
Now consider the following Propositions.  
 
PROPOSITION K. Every negative a has an ultra full continuation.  
PROPOSITION L. Every negative a has an ultra full continuation 
with an ultra full continuation.  
PROPOSITION M. Every negative a a series of ultra full 
continuations of every finite length. 
PROPOSITION N. Every negative a has an infinite series of ultra 
full continuations.  
 
Note that Propositions K,L,M are explicitly Õ0

2. Note that every 
set in the continuations has cardinality at most one of the sets 
in the initial a. Hence there is an obvious a priori bound on 
the lengths of the continuations. Then we can bound the 
numerators and denominators used, putting the statements in 
explicitly Õ0

1 form. Proposition N is implicitly Õ0
1 using these 

bounds, via the Completeness Theorem for first order logic.  
 
THEOREM 3.2.1. Propositions L,M are provably equivalent to 
Con(SRP) over EFA. Proposition N is provably equivalent to 
Con(SRP) over WKL0. Proposition K is provable in EFA + 
Con(SRP).   
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Note that a = {(0,...,0)} has no ultra continuation, and is not 
negative.  
 
There is a fixed negative a for which Propositions L,M is 
provably equivalent to Con(SRP) over EFA and Proposition N is 
provably equivalent to Con(SRP). It is realistic to find such an 
a where all terms are of small cardinality (but the number of 
terms (sets) is not expected to be made small). 
 
3.3. FINITE ULTRA* POINTED CONTINUATIONS IN Q: HUGE 
  
DEFINITION 3.3.1. b is a pointed continuation of a  if and only 
if b extends a, and every (x,y) from b with x1,...,xk,y1,...,yk-1 < 
yk, is similar to some (z,w) from alpha.  
 
DEFINITION 3.3.2. x is a pointed continuation blocked by b if and 
only if b,x is not a pointed continuation of alpha.  
 
DEFINITION 3.3.3. b is a full pointed continuation of a if and 
only if b is a pointed continuation of a where every x Í Èb that 
is not a term of b is a pointed continuation blocked by 
b|<max(x).  
 
DEFINITION 3.3.4. b is an ultra full pointed continuation of a if 
and only if b is a full pointed continuation of a, where the 
upper shift of every term of a is a term of b.  
 
DEFINITION 3.3.5. b is an ultra* full pointed continuation of a 
if and only if  
i. b is an ultra full pointed continuation of a.  
ii. ush(Èb|£k) = {p £ k: S(k+(1/2),0,p,...,p)}.   
 
PROPOSITION O. Every negative a has an ultra* full pointed 
continuation 
PROPOSITION P. Every negative a has an ultra* full pointed 
continuation with an ultra* full pointed continuation.  
PROPOSITION Q. Every negative a starts a series of ultra* full 
pointed continuations of every finite length. 
PROPOSITION R. Every negative a starts an infinite series of 
ultra* full pointed continuations. 
 
Note that these statements are all explicitly Õ0

2. However, there 
are obvious a priori bounds on the numerators and denominators 
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used (double exponential) that make the statements explicitly 
Õ0

1.  
 
THEOREM 3.3.1. Propositions P,Q are provably equivalent to 
Con(HUGE) over EFA. Proposition O is provable in EFA + 
Con(HUGE). Proposition R is provably equivalent to Con(HUGS) 
over WKL0.  
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