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precise. (‘I am false’ lacks truth-value in al/ f.p.’s; ‘T am true’ has no truth-value in any intrinsic
f.p., but has one in every maximal f.p.; etc.)

In the usual Tarski ‘hierarchy’ approach, if Smith says, (1) * Everything Jones says is true”,
he must choose a ‘level’ for “true”. If (unbeknownst to Smith) some of Jones utterances are
on too high a “level ”, (1) may not ‘cover’ everything Jones says. The present proposal assigns
no ‘level” to “true”. If (1) has a truth-value in the least f.p. (as it will in ‘normal’ cases), in a
sense it has a ‘level’ (the least 8 such that (1) € Sj), but the ‘level’ depends on the facts about
what Jones says, rather than the *truth-predicate’ of (1).

Nevertheless if L, contains arithmetic, a Tarski hierarchy of truth-predicates and meta-
languages for L, can be constructed within L. The idea: If A(x) is true of the formulae of Lo,
To(x) = T(x) A Ao(x), L, is the sublanguage formed by adjoining T(x) to Lo, etc. The con-
struction can be continued through high ordinals <«o; we omit details, which are related to
the hyperarithmetic hierarchy, and can be used to construct it. Formulae such as (1), however,
appear on no level of the Tarski hierarchy.

One can make a fixed point two-valued by declaring 7'(x) false wherever it was undefined.
Tarski's convention T then becomes: T("A") V T("~A) 2. (A=T(A) A (~A4=
T(" ~ A")). This leads to a simple axiomatic theory of truth.

If D contains (codes of) all finite sequences of elements of D, an analogous construction
allows L, to be extended to a language with its own satisfaction predicate. (Here the ordinal of
the induction may be uncountable.) Extensions to intensional languages are also possible.
Interesting technical questions and theorems arise in the investigation.

CARLOs A. INFANTOZZI, Some results in inferential calculus.

In this paper it is shown: if a (Z")-Johansson’s field JJf has its operator N such that it
verifies the converse antitone property, or it is bijective and Nc holds, or it is an involution, then
JJfis a Boolean algebra. One arrives at the same result if the » of the ZJf fulfills the axiom 0
and N has the property Nrc, orif a* U b = b:aor (b:a)* = a N b* (notations and terminology
of the paper Introduccion a la logica algébrica, IES *Secc. Mat.”, serie X, n° 26).

If only Ntc holds, then ZJf is a (7)-Lewis algebra. If the axiom 0 only is fulfilled in ZJf,
then this structure is a brouwerian algebra.

The paper contains applications to (&)-fields, Heyting’s and Langford’s algebras, Stone
lattices, bi-algebras, etc.

Other characterizations of these algebras and fields are obtained in this article.
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HARVEY FRIEDMAN', Systems of second order arithmetic with restricted induction. 1.

In [3], we presented results about systems of second order arithmetic based on the full
induction scheme. In this abstract, we present corresponding results for systems with induction
restricted to atomic formulae.

The proper language %, to use for this purpose has variables n; over w; variables /%, /2, /2
over l-ary, 2-ary, 3-ary functions on w; the number constant 0; and the function constant N

1 This research was partially supported by NSF P038823.
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(successor). Variables and 0 are terms; if s, ¢, r are terms, so are N(¢), fi2(¢), f2(s, t), and f2(s, ¢, r).
The atomic formulae are s = ¢, and formulae are built up from these by connectives and
quantification over numbers and functions.

Careful study has revealed that the proper base theory for our purpose is ETF (elementary
theory of functions), whose axioms are as follows:

1. (Successor axioms) N(n) # 0, N(n) = N(m) >n = m, n # 0— @m)(N(m) = n).

2. (Initial functions) Three axioms for constant 1-ary, 2-ary, 3-ary functions; six axioms for
1-ary, 2-ary, 3-ary projection functions.

3. (Composition) Nine axioms asserting closure under composition.

4. (Primitive recursion) @Af*)f10) = j & (YVK)SUN (k) = fk, f1(k) & (3g)(Vk)(Vn)
(g%(k, 0) = g'(k) & g*(k, N()) = h*k, g%k, n))).

5. (Permutation) (Yr)@!m)(fX(m) = n) — Qg)(Vn)(f*(g*(n)) = n).

6. (Atomic Induction) (f3(k,n,0) = g%k, n, 0) & (Ym)(f3(k, n, m) = gk, n, m) —
f3(k, n, N(m)) = g%k, n, N(m)))) = (Ym)(f(k, n, m) = g°(k, n, m)).

We carry over the definitions of £2, II2, £, I1,,,Z, and IT in [3] to the present language in the
obvious way (where A, = quantifier free). Comprehension axioms and axioms of choice and
dependent choice are written (Yk)(Ya)(Ym)@!r )@k, n, m, r)) — Gf2)VE)Vn)Vm)(f3(k, n, m) =
r e p(k, n, m, r), (Fm)G ) (p(n,f2) — Qe YXIME ) e(n,/2) & (V)Im)(f2(k, m) = g%(n, k, m))),
(V)32 p(f2, 82) — (VfACHNVKIm)f2(k, m) = h°(0, k, m)) & (Ym)Ef?)Fg*N(f?, &%) &
VR m)(f2(k, m) = h*(n, k, m) & g*(k, m) = h*(N(n), k, m))))).

Let RCA, be ETF together with A9-CA (or recursive comprehension for %, in [3]). The
theories ACA, KL, WKL, SHB, SLUB, MLUB, SBW, HCA, HAC, HDC, ABW, SL, weak
II,-AC, CWO, PST, TI, II,-CA, PKT, and ALUB were formulated in [3] within the language
% using the base theory RCA. ATR, CDS, and RFN were similarly formulated using ACA as a
base theory. Let ACAy, KLy, WKL,, SHB,, SLUB,, MLUB,, SBW,, HCA,, HAC,, HDC,,
ABW,, SL,, weak IT,-AC,, CWO,, PST,, Tl,, II;-CA,, PKT, and ALUB, be formulated
within %, using the above formulations of CA, AC, and DC, and taking ETF as the base
theory (instead of RCA). Let ATR,, CDS,, and RFN, be similarly given, using ACA, as the
base theory. Let I be the full scheme of induction in %,.

Systems which include variables over real numbers and functions on the reals is discussed
in [4].
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HARVEY FRIEDMAN, Systems of second order arithmetic with restricted induction. 11.

This is a continuation of Systems of second order arithmetic with restricted induction. 1, and
all notation and references are from it.

THEOREM 1. RCA, is equivalent to ETF. ACA, is equivalent to (a) KLo, (b) SLUBy, (c)
MLUB,, (d) SBW,, (€) ETF + (V/*)3g")(Vn)(g'(n) = 0 & @m)(f*(m) = n)).

THEOREM 2. WKL, is equivalent to (a) the compactness theorem for propositional calculus.
(b) The completeness theorem for sets of sentences in propositional calculus. (¢) SHB,. (d) EFT
together with the axioms *“if T is a consistent set of sentences in predicate calculus of complexity
<7i then QZ)(VA € T)(ZF A).” (€) Every consistent theory in predicate calculus has a complete
consistent extension in the same language. (f) Every consistent theory in predicate calculus has a
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Henkin complete extension (with new Henkin constants added). ETF + I is equivalent to ETF
together with the axioms “if the sentence A of %, is provable, then A.” ETF proves induction with
respect to 113 formulae.

Tueorem 3. ETF and WKL, prove the same 11 formulae. However, they do not prove the
same S, sentences. WKLq proves that for any Xo there is a sequence {x,}, 0 < n, such that each
Xy, is nonrecursive, and the only sets recursive in more than one term are recursive.

Treorem 4. HAC, is equivalent to SLo. HDC, F HAC, F HCA,. HDC,, but not HAC,
proves ABW,. ACAg and HAC, prove the same T1, formulae. There is aZy sentence provable in
HDC, but false in some w-model of HAC,.

TueoreM 5. HCA, HAC, HDC have the same provable I1, formulae as ATR( < &) (see [5]).
HDC, has the same provable I13 formulae as ATR(< «®).

TreOREM 6. ATR, is equivalent to (a) weak T1,-ACo, (b) PSTo, (¢) CWOo, (d) CDS,, (¢)
ACA, + “to0 each pair of well orderings there is an isomorphism from one into the other.” ATR,
and Feferman’s IR (see [1]) prove the same 11 formulae, but there is a £, sentence provable in
ATR, which is false in some w-model of IR. EveryS formula provable in IR is provable in ATR,.

Taeorem 7. ATR, proves HAC,, but not HDCo. TR, proves the existence of an w-model
of HDC. ATR,, + HDC; proves the existence of an w-model of ATR. ATR proves the relativized
Kleene-Souslin Theorem. ATR proves the existence of a perfect tree, the paths of which are of
distinct nonzero minimal hyperdegree (also done by S. Simpson).

TueoreM 8. TI, Tlo, and RFN, are equivalent. Tl for X, formulae is equivalent to ATR,.
ATR, does not prove Tl for I, formulae, but HDC, does. Tl for I1 formulae proves HAC,.
T, for I1; formulae proves HCAo. Tlo for , formulae proves HDCo.

Tueorem 9. I1;-CAq, PKTo, and ALUB, are equivalent. T1,-CAo and the system ID<® of
iterated inductive definitions prove the same I1, sentences in the appropriate sense (see [2]).
11,-CA, proves ATR, + HDC,, and the existence of an w-model of TI.

We conclude with some results about the relation between RCA and ACAo.

TreoreM 10. RCA and ACA, prove the same 11 formulae. AnyZ formula provable in RCA
is provable in ACAo.

Kit FIN, Completeness for the S5 analogue of E.

A model is a quintuple (7,0, -, W, $), where (7,0, *) is a semilattice structure with identity
0, W (worlds) is a nonempty set, and $ (valuation) < (T x W) x sentence-letters. Relative to a
model, the truth-predicate F <(T x W) x formulas is defined by:

@) (x, w) F Piff ¢(x, wlp;

(ii) (x, w) F B— Ciff (Yo)[wRo— (¥y € T)((, o) FB—(x-3,0) FO)l.

A formula A is valid, FA, if ¢ F A relative to each model.

ES5; is the result of adding the axiom-scheme A—-A—(B—C)—(B—C)to E;. Aterm
is a pair (4, x), also written A, where A is a formula and x is a finite set of natural numbers.
Deducibility () on terms is defined by the standard structural rules and the further rules:
Ay, (A= B)y FByoy; B, Ay F Byosry = AF(A—B)x if k does not belong to x or to the
second component of any term in A and either (a) the first component of all terms in A is of the
form (C — D) or (b) B is of the form (C— D).

Lemma 1. If A€ ES; then FA,.

LemMa 2. If A b By then there are terms (A1, %1), " *s (Ans Xp) in A, n20, such that
(A;—> (43— (A4 — B)---D€ES and y = X, V- -V X

If A is a set of terms, [A] = {4,: A | A} and A’ = {A € A: A is of the form (B—O)}.
Let Ao, Ay, bean enumeration of all formulas in which each formula appears indefinitely
often; and let A = [[{(4y, {1): 1 # KTV (e kD).

Lemma 3. Ak = A forall k and A

Now let % = (7,0, -, W, ¢), where T = the set of finite subsets of natural numbers, 0 = ¢,

is set-theoretic union, W = {Ax: k = 0} and ¢ = {((x, w),p) (T x W) x sentence-letters:
PxE W

Lemma 4. (x, w) F A (velative to A) iff Az € w.

From Lemmas 1, 2 and 4, it follows that:
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