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Abstract. We begin with a discussion of various forms of G1 put 
into the following general form: If a first theory satisfies one 
or more adequacy conditions then it has one or more wildness 
properties. We give a list of familiar adequacy conditions and 
wildness properties. We propose an investigation into the myriad 
forms of G1 in this framework. Some such forms of G1 will be 
well known, some well known to be false, and some yet to be 
investigated. We expect many will suggest further 
investigations. We then discuss various new "no interpretation" 
forms of G2. These are exquisitely simple formulations of G2 in 
the following sense. The proofs of them from G2 are entirely 
straightforward applications of G2 and Gödel Completeness. The 
derivation of G2 is also straightforward and does not rely on 
any of the ingredients in the known proofs of G2. This "no 
interpretation G2" evolved from a long series of struggles with 
G2 which are compiled in section 3. We also give corresponding 
surprisingly simple characterizations of the consistency 
statement Con(T) for finitely axiomatized T. We then discuss 
G2/1-con which is G2 with the strengthened hypothesis of 1-
consistency and the weakened conclusion of the unprovability of 
1-consistency. We give the long since known, if not well known, 
proof of G2/1-con which is much simpler than the proof of G2. It 
is best proved by what we call "transparent diagonalization" 
which is the kind of informative diagonalization used by Cantor 
in his proof that given an infinite sequence of subsets of N, 
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some subset of N is missing. A by product of this proof is the 
association of a crucially important set of objects to T that 
gets properly expanded by T + 1-Con(T) - namely the provably 
recursive functions. Since so much of the philosophical and 
foundational import of G2 is already present with G2/1-con, we 
propose that G2/1-con be revisited with the same deep intensity 
as has G2. We call for a proof of G2 by transparent 
diagonalization. We then discuss some proofs of G2. First a 
clean formulation of the more or less original and most common 
proof, seeking to minimize the mystery. This usual construction 
is regarded as mysterious since it is used in the Gödel Rosser 
theorem, and there we have no reasonable understanding of the 
nature of Rosser sentences under natural syntactic numberings. 
We then give a non mysterious proof of G2 from (a 
straightforwardly explicit form of) the fixed point theorem of 
Hartley Rogers, which is easily derived from the earlier Kleene 
Second Recursion Theorem (and vice versa). However, the proofs 
of these Kleene, Rogers theorems can also be regarded as 
mysterious. We propose a demystification of Kleene, Rogers using 
the RASP model of computation. This approach suggests that there 
might be a kind of hidden sequential structure behind Kleene, 
Rogers and G2. We then give another proof of G2 using 
(explicitly) remarkable sets. This really is another way of very 
cleanly pushing the mystery behind proving G2 to a particularly 
simple recursion theoretic construction. The idea here is that 
the notion of (explicitly) remarkable might suggest a way of 
incorporating G2 into category theory and/or type theory, 
something which has long been sought. Finally, we make a brief 
presentation of the state of the art in Tangible Incompleteness 
with the most recent examples of implicitly Õ0

1 sentences 
provably equivalent to the consistency of certain large cardinal 
hypotheses (ongoing research).  
 
1. G1. Gödel's first incompleteness theorem. 
2. G2. Gödel's second incompleteness theorem. 
3. Previous evolving work on G2.  
4. Proof of G2/1-con by transparent diagonalization. 
5. Towards Demystifying G2. 
6. Tangible Incompleteness.  
 
1. G1. GÖDEL'S FIRST INCOMPLETENESS THEOREM  

I recently found the article [Ch20]. There is some overlap 
between what I say here about G1 and this valuable well written 
article.  
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By a theory we will always mean a theory T in the usual PC(=), 
(predicate calculus with equality), which comes with a 
designated language (of constant, relation, and function 
symbols).  
 
The most common way to formulate G1 is to assert that any theory 
T with an "adequacy condition" has a "wildness property". There 
are several important kinds of adequacy conditions and wildness 
properties. 
 
Common adequacy conditions on a theory T (with multiple 
choices): 
a. T is consistent. 
b. T is (finitely axiomatized, axiomatized by finitely many 
axiom schemes, recursively axiomatized).  
c. T interprets a given theory K, (finitely axiomatized, 
axiomatized by finitely many axiom schemes, recursively 
axiomatized). 
d. T is consistent with an interpretation of a given theory K, 
in the same language as T, (finitely axiomatized, axiomatized by 
finitely many axiom schemes, recursively axiomatized). 
e. The language of T is or extends a given language, and T 
proves a certain theory K (finitely axiomatized, axiomatized by 
finitely many axiom schemes, recursively axiomatized).   
 
Common wildness properties of a theory T (with multiple 
choices): 
A. T is incomplete in the sense that there is a sentence in the 
language of T that is neither provable nor refutable in T. 
B. T is essentially incomplete in the sense that no consistent 
extension of T by finitely many sentences is complete.  
C. The set of theorems of (T, any finite extension of T, any 
recursive extension of T) is (complete r.e., not recursive, not 
primitive recursive, not elementary recursive, not polytime 
computable).   
D. The set of theorems of T and the set of refutables of T are 
recursively inseparable.  
E. Assuming the language of T is or extends a given language, A-
D restricted to sentences in a given sublanguage.  
 
There are likely some other interesting adequacy conditions and 
wildness properties that should be considered in such a 
systematic investigation. 
 
TEMPLATE FOR G1. Let T obey a chosen one or more (parts) of a-e. 
Then T has a chosen one or more (parts) of properties A-E. 
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SYSTEMATIC G1 INVESTIGATION. Determine relationships between 
various instances of the Template for G1, including their 
correctness for various K.  
 
The most elemental form of G1 involving only the most 
rudimentary of notions, is arguably the following. 
 
PURE G1 (finite). There is a consistent finitely axiomatized 
theory K such that any consistent finitely axiomatized theory T 
interpreting K is incomplete.  
 
Robinson's Q is most commonly used for pure G1, as well as its 
many natural "variants" in the sense of being mutually 
interpretable with Q. There is no known natural system K for 
this pure G1 that does not interpret Q.  
 
PURE G1 (schematic). There is a consistent theory K with 
finitely many axiom schemes, such that any consistent theory T 
axiomatized with finitely many axiom schemes, interpreting K, is 
incomplete.  
 
Here there is a natural infinitely axiomatized system R, 
interpretable in Q, but where Q is not interpretable in R, that 
we can use. But we would like to say that R is "very recursive". 
However, as "schematic" as the system R looks, it is not 
officially given by finitely many axiom schemes. So we need to 
either expand the notion of axiom scheme to allow R, or we need 
to modify R to fit into the usual notion of schemes. This should 
be investigated. 
 
What is missing is insight into the special status of Q and R 
and perhaps variants of Q and R, for G1.  
 
Furthermore, as we vary the wildness properties we seek for T, 
how does that affect the choices of K that we can use in the 
adequacy conditions?  
 
There is also an attractive simplicity investigation here. There 
are some reasonably natural measures of the complexity of 
presentations of finitely axiomatized axiom systems in PC(=). 
E,g., one can count the number of occurrences of symbols other 
than parentheses and commas, each occurrence of a variable 
counted as 1. We can seek information on the smallest complexity 
of a K supporting Pure G1 or other instances of the G1 Template. 
The language of arithmetic would not be a good choice for this. 
The language of set theory would be much better, through the 
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system AS of Adjunctive Set Theory, as well as theories of 
strings. AS,Q are mutually interpretable. 
 
CONJECTURE. Any finitely axiomatized system K usable for pure G1 
and variants of G1, of complexity at most that of AS, interprets 
AS.  
    
The most common languages used to formulate versions of G1 are 
arithmetic (with and without exponentiation, with and without 
primitive recursive function symbols, with and without <), set 
theory with membership, and string theory concatenation. There 
are some important special classes of formulas, most notably Õ0

1, 
å0

1, and å0
1 using polynomial equations. Here G1 meets Hilbert's 

Tenth Problem. See. e.g., [Je16]. 
 
I was gratified to hear from Albert Visser during my talk that 
he just came up with a seemingly interesting new G1 question 
that fits nicely into my G1 Template. Can we find a K' that does 
for G1 what K does, or some of what K does, where the set of 
theorems of K' is recursive? Perhaps this is an indication of 
the usefulness of the G1 Template for generating new research.  
 
2. G2. GÖDEL'S SECOND INCOMPLETENESS THEOREM 
 
After my talk at the conference, I proved Theorems 2.1-2.5 
below, using ideas for related results that I wrote about from 
2003 through 2017. I include some references to this earlier 
work in section 3. We use EFA = exponential function arithmetic, 
which is well known to be finitely axiomatizable.  
 
THEOREM 2.1. No consistent extension T of PA, in any language, 
is interpretable in any theorem of T in the language of PA.  
 
NOTE: Here we can take the language of PA to be 0,S,+,• or any 
extension of 0,S,+,• using any set of primitive recursive 
function symbols, with the usual axioms for successor, and the 
usual primitive recursive defining axioms. Also here PA uses 
induction for only arithmetic formulas as usual, and not 
induction for formulas involving other symbols.  
 
Proof: Let T prove PA + j, j a sentence in L(PA), where T is 
interpretable in j. We show that T is inconsistent.  
 
It is well known that j ® Con(j) is provable in PA using partial 
truth definitions and cut elimination. Let T' be a finitely 
axiomatized fragment of T which proves EFA and j ® Con(j). 
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Therefore T' proves Con(j). Then T' is interpretable in j and 
Con(T') makes sense. From this interpretation, EFA proves Con(j) 
® Con(T'). Hence T' proves Con(T'), and therefore by G2, T' Í T 
is inconsistent. QED 
 
THEOREM 2.2. No consistent extension T of PA[n], in any 
language, is interpretable in any å0

n+2 theorem of T.  
 
Proof: Let T prove j, where T is interpretable in j and j is 
å0

n+2. We show that T is inconsistent.  
 
It is known that j ® Con(j) is provable in PA[n] using partial 
truth definitions and cut elimination, as proved in [Le83] (also 
see [Be97], [Be05]). Let T' be a finitely axiomatized fragment 
of T which proves PA[n] and j, and therefore Con(j). Then T' is 
interpretable in j and Con(T') makes sense. From this 
interpretation, EFA proves Con(j) ® Con(T'). Hence T' proves 
Con(T'), and therefore by G2, T' Í T is inconsistent. QED 
 
THEOREM 2.3. No consistent extension T of PRA, in any language, 
is interpretable in any Õ0

1 theorem of T in L(PRA).  
 
Proof: Let T prove j, j being Õ0

1 in L(PRA), where T is 
interpretable in j. We show that T is inconsistent.  
 
It is known that j ® Con(j) is provable in PRA since we have 
Herbrand's theorem available in PRA and induction applied to 
bounded formulas in the primitive recursive function symbols 
used in j. Use of Herbrand here involves iteration of the 
underlying functions. Let T' be a finitely axiomatized fragment 
of T which proves EFA and j, and therefore Con(j). Then T' is 
interpretable in j and Con(T') makes sense. From this 
interpretation, EFA proves Con(j) ® Con(T'). Hence T' proves 
Con(T'), and therefore by G2, T' Í T is inconsistent. QED 
 
SEFA is super exponential function arithmetic, and EFA is 
exponential function arithmetic.  
  
THEOREM 2.4. No consistent extension T of SEFA, in any language, 
is interpretable in any Õ0

1 theorem of T in L(EFA).  
 
Proof: Let T prove j, j being Õ0

1 in L(EFA), where T is 
interpretable in j. We show that T is inconsistent.  
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It is known that j ® Con(j) is provable in SEFA. To see this, 
assume j is refutable, and apply Herbrand's theorem, available 
in SEFA. This creates indefinite iterations of addition and 
multiplication and exponentiation, and the associated truth 
definitions are handled appropriately by SEFA. Let T' be a 
finitely axiomatized fragment of T which proves EFA and j, and 
therefore Con(j). Then T' is interpretable in j and Con(T') 
makes sense. From this interpretation, EFA proves Con(j) ® 
Con(T'). Hence T' proves Con(T'), and therefore by G2, T' Í T is 
inconsistent. QED 
 
PFA is polynomial function arithmetic, also known as bounded 
arithmetic.  
 
THEOREM 2.5. No consistent extension T of EFA, in any language, 
is interpretable in any Õ0

1 theorem of T in L(PFA).  
 
Proof: Let T prove j, j being Õ0

1 in L(EFA), where T is 
interpretable in j. It suffices to prove that T is inconsistent.  
 
It is known that j ® WCon(j) is provable in EFA, where WCon is 
the weakened form of Con also referred to as cut free 
consistency. Since we have Herbrand's theorem available in EFA 
for specific complexity, and we can use it here with indefinite 
iteration of addition and multiplication, we obtain j ® WCon(j) 
in EFA. Let T' be a finitely axiomatized fragment of T which 
proves EFA and j, and therefore WCon(j). Then T' is 
interpretable in j and Con(T') makes sense. From this 
interpretation, EFA proves WCon(j) ® WCon(T'). Hence T' proves 
WCon(T'), and therefore by G2, T' Í T is inconsistent. NOTE: G2 
is well known to hold for WCon. QED 
 
Note that we have derived Theorems 2.1 - 2.5 from G2 applied to 
the r.e. presented theories extending PA, PA[n], PRA, SEFA, EFA, 
respectively.  
 
Now we want to obtain equivalence. The PRINCIPAL POINT here is 
that this equivalence is very transparent and does not even 
remotely involve any of the ideas used to prove G2.  
 
THEOREM 2.6. Theorems 2.1 - 2.5 are demonstrably equivalent to 
G2 for r.e. presented theories in any language, where the axioms 
extend PA, PA[n], PRA, SEFA, EFA, respectively.  
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Proof: We have already obtained the derivations from G2. We now 
want to derive G2. Now suppose Theorem 2.1 and let T be a 
consistent r.e. presented extension of PA, PA[n], PRA, SEFA, 
EFA, respectively. For G2, let T prove Con(T), where Con(T) is 
formulated as a Õ01 sentence in L(PFA). Now in each of the five 
cases, T is interpretable in Con(T) with some infrastructure 
needed to properly use Con(T). EFA easily serves as this 
infrastructure. So using Theorems 2.1 - 2.5, we see that T is 
inconsistent, establishing G2 in each case. QED  
 
We now characterize the Con statement for finitely axiomatized 
theories (single sentences). We first characterize the Con 
statement up to provable equivalence over PA.   
 
THEOREM 2.7. Let A be any sentence. For all arithmetic B, PA + B 
interprets A if and only if PA + B proves Con(A). For a given 
sentence A, Con(A) is the unique arithmetic sentence with this 
property up to PA provability.  
 
Proof: Let A be a sentence and B be an arithmetic sentence. If 
PA + B proves Con(A) then obviously PA + B interprets A. Now 
suppose PA + B interprets A. Let PA[n] + B interpret A. Then EFA 
proves Con(PA[n] + B) ® Con(A). Now PA + B proves Con(PA[n] + 
B). Hence PA + B proves Con(A).  
 
Now let C be an arithmetic sentence such that for all arithmetic 
sentences B, PA + B interprets A if and only if PA + B proves C. 
Then for all arithmetic sentences B, PA + B proves C if and only 
if PA + B proves Con(A). Setting B = C we get PA proves C ® 
Con(A), and by setting B = Con(A), we get PA proves Con(A) ® C. 
Hence PA proves C « Con(A). QED 
 
Now we characterize the Con statement up to provable equivalence 
over PRA[n]. 
 
THEOREM 2.8. Let A be any sentence and n ³ 1. For all å0n+2 
sentences B, PA + B interprets A if and only if PA[n] + B proves 
Con(A). For a given sentence A, Con(A) is the unique å0

n+2 
sentence with this property up to PA[n] provability.  
 
Proof: Let A be a sentence and B be å0n+2. If PA[n] + B proves 
Con(A) then obviously PA[n] + B interprets A. Now suppose PA[n] 
+ B interprets A. Then EFA proves Con(PA[n] + B) ® Con(A). It is 
known that PA[n] + B proves Con(PA[n] + B) using partial truth 
definitions and cut elimination, as proved in [Le83] (also see 
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[Be97], [Be05]). Hence PA[n] + B proves Con(A). Note that PA[n] 
gets absorbed in B.  
 
Now let C be a å0n+2 sentence such that for all arithmetic 
sentences B, PA + B interprets A if and only if PA + B proves C. 
Then for all å0n+2 sentences B, PA[n] + B proves C if and only 
if PA + B proves Con(A). Setting B = C we get PA[n] proves C ® 
Con(A), and by setting B = Con(A), we get PA[n] proves Con(A) ® 
C. Hence PA proves C « Con(A). QED 
 
Next we characterize the Con statement up to provable 
equivalence over PRA. 
 
THEOREM 2.9. Let A be any sentence. For all Õ0

1 sentences B in 
L(PRA), PRA + B interprets A if and only if PRA + B proves 
Con(A). For a given sentence A, Con(A) is the unique Õ0

1 sentence 
in L(PRA) with this property up to PRA provability.  
 
Proof: Let A be a sentence and B be Õ0

1 in L(PRA). If PRA + B 
proves Con(A) then by standard techniques, PRA + B interprets A. 
Now suppose PRA + B interprets A. Let PRA' + B interpret A, 
where PRA' is a finite fragment of PRA. Then EFA proves Con(PRA' 
+ B) ® Con(A). Now PRA + B proves Con(PRA' + B) by standard 
techniques using that B is Õ0

1 in L(PRA). Hence PRA + B proves 
Con(A).  
 
Now let C be a Õ0

1 sentence in L(PRA) such that for all Õ0
1 B in 

L(PRA), PRA + B interprets A if and only if PRA + B proves C. 
Then for all Õ0

1 B in L(PRA), PRA + B proves C if and only if PRA 
+ B proves Con(A). Setting B = C we get PRA proves C ® Con(A), 
and by setting B = Con(A), we get PRA proves Con(A) ® C. Hence 
PRA proves C « Con(A). QED 
 
We next characterize the Con statement up to equivalence over 
SEFA. 
 
THEOREM 2.10. Let A be any sentence. For all Õ0

1 sentences B in 
L(EFA), SEFA + B interprets A if and only if SEFA + B proves 
Con(A). For a given sentence A, Con(A) is the unique Õ0

1 sentence 
in L(EFA) with this property up to SEFA provability.  
 
Proof: Let A be a sentence and B be a Õ0

1 sentence in L(EFA). If 
SEFA + B proves Con(A) then by standard techniques, SEFA + B 
interprets A. Now suppose SEFA + B interprets A. Then EFA proves 
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Con(PRA' + B) ® Con(A). Now SEFA + B proves Con(SEFA + B) by 
standard techniques using that B is Õ0

1 in L(EFA), with 
Herbrand's theorem, available in SEFA, and the handling of 
compound terms in L(EFA) within EFA. Hence SEFA + B proves 
Con(A).  
 
Now let C be a Õ0

1 sentence in L(EFA) such that for all Õ0
1 B in 

L(EFA), SEFA + B interprets A if and only if SEFA + B proves C. 
Then for all Õ0

1 B in L(EFA), SEFA + B proves C if and only if 
SEFA + B proves Con(A). Setting B = C we get SEFA proves C ® 
Con(A), and by setting B = Con(A), we get SEFA proves Con(A) ® 
C. Hence SEFA proves C « Con(A). QED 
 
Next, we characterize the WCon statement up to equivalence over 
EFA.  
 
THEOREM 2.11. Let A be any sentence. For all Õ0

1 sentences B in 
L(PFA), EFA + B interprets A if and only if EFA + B proves 
WCon(A). For a given sentence A, WCon(A) is the unique Õ0

1 
sentence in L(PFA) with this property up to EFA provability.  
 
Proof: Let A be a sentence and B be a Õ0

1 sentence in L(PFA). If 
EFA + B proves WCon(A) then by standard techniques, EFA + B 
interprets A. Now suppose EFA + B interprets A. Then EFA proves 
WCon(PRA' + B) ® WCon(A). Now EFA + B proves WCon(EFA + B) by 
standard techniques using that B is Õ0

1 in L(EFA), with schematic 
Herbrand's theorem, available in EFA, and the handling of 
compound terms in L(PFA) within EFA. Hence EFA + B proves 
WCon(A).  
 
Now let C be a Õ0

1 sentence in L(PFA) such that for all Õ0
1 B in 

L(PFA), EFA + B interprets A if and only if EFA + B proves C. 
Then for all Õ0

1 B in L(PFA), EFA + B proves C if and only if EFA 
+ B proves WCon(A). Setting B = C we get EFA proves C ® WCon(A), 
and by setting B = WCon(A), we get EFA proves WCon(A) ® C. Hence 
EFA proves C « WCon(A). QED 
 
3. PREVIOUS EVOLVING WORK ON G2 
 
I wrote extensively about G2 on the FOM email list from 2003 
through 2017. There was a long series of evolving and perfecting 
ideas.  
 
165: Incompleteness Reformulated  4/29/03  1:42PM 
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http://www.cs.nyu.edu/pipermail/fom/2003-April/006441.html 
 
Godel's Theorems  4/29/03  9:57PM 
http://www.cs.nyu.edu/pipermail/fom/2003-April/006443.html 
 
166: Clean Godel Incompleteness  5/6/03  11:06AM 
http://www.cs.nyu.edu/pipermail/fom/2003-May/006496.html 
 
167: Incompleteness Reformulated/More  5/6/03  11:57AM 
http://www.cs.nyu.edu/pipermail/fom/2003-May/006504.html 
 
168: Incompleteness Reformulated/Again 5/8/03  12:30PM 
http://www.cs.nyu.edu/pipermail/fom/2003-May/006518.html 
 
174: Directly Honest Second Incompleteness  6/3/03  1:39PM 
http://www.cs.nyu.edu/pipermail/fom/2003-June/006694.html 
 
284: Godel’s Second  5/9/06  10:02AM 
http://www.cs.nyu.edu/pipermail/fom/2006-May/010524.html 
 
285: Godel’s Second/more  5/10/06  5:55PM 
http://www.cs.nyu.edu/pipermail/fom/2006-May/010529.html 
 
286: Godel’s Second/still more  5/11/06  2:05PM 
http://www.cs.nyu.edu/pipermail/fom/2006-May/010532.html 
 
305: Proofs of Godel’s Second  12/21/06  11:31AM 
http://www.cs.nyu.edu/pipermail/fom/2006-December/011214.html 
 
306: Godel’s Second/more  12/23/06  7:39PM 
http://www.cs.nyu.edu/pipermail/fom/2006-December/011223.html 
 
307: Formalized Consistency Problem Solved  1/14/07  6:24PM 
http://www.cs.nyu.edu/pipermail/fom/2007-January/011282.html 
 
343: Goedel’s Second Revisited 1  5/27/09  6:07AM 
http://www.cs.nyu.edu/pipermail/fom/2009-May/013753.html 
 
344: Goedel’s Second Revisited 2  6/1/09  9:21PM 
http://www.cs.nyu.edu/pipermail/fom/2009-May/013778.html 
 
346: Goedel’s Second Revisited 3  6/16/09  11:04PM 
http://www.cs.nyu.edu/pipermail/fom/2009-June/013828.html 
 
347: Goedel’s Second Revisited 4  6/20/09  1:25AM 
http://www.cs.nyu.edu/pipermail/fom/2009-June/013837.html 
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348: Goedel’s Second Revisited 5  6/22/09  11:00AM 
http://www.cs.nyu.edu/pipermail/fom/2009-June/013843.html 
 
388: Goedel’s Second Again/definitive?  1/7/10  11:06AM 
http://www.cs.nyu.edu/pipermail/fom/2010-January/014290.html 
 
580: Goedel’s Second Revisited  5/29/15  5:52 AM 
http://www.cs.nyu.edu/pipermail/fom/2015-May/018750.html 
 
Explaining Some Goedel  4/18/16  11:06PM 
http://www.cs.nyu.edu/pipermail/fom/2016-April/019745.html 
 
706: Second Incompleteness/1  9/5/16  2:03AM 
707: Second Incompleteness/2  9/8/16  3:37PM 
708: Second Incompleteness/3  9/11/16  10:33PM 
 
706-708 are the model theoretic forms of G2 with most proofs 
given in detail. Most of the ideas are already presented in the 
165-580 listed above.  
 
773: Goedel’s Second: Proofs/1  Dec 18 20:31:25 EST 2017 
774: Goedel’s Second: Proofs/2  Dec 18 20:36:04 EST 2017 
775: Goedel’s Second: Proofs/3  Dec 19 00:48:45 EST 2017 
777: Goedel’s Second: Proofs/4  12/28/17  8:02PM 
778: Goedel’s Second: Proofs/5  12/30/17  2:40AM 
 
773-778 concern the Remarkable Set proof of G2, which has been 
refined and perfected recently according to section 5 below.  
 
4. PROOF OF G2/1-con BY TRANSPARENT DIAGONALIZATION 
 
The prime example of what we call Transparent Diagonalization is 
the usual proof by Cantor that given an infinite sequence of 
subsets of N, there is a subset of N that is missing. This 
diagonalization argument is unlike the diagonalization/self 
reference argument used in Gödel's original proofs.  
 
The diagonalization/self reference argument used in Gödel's 
original proofs is still considered rather mysterious in light 
of, for example, Barkley Rosser's use of it in the Gödel/Rosser 
theorem. To this day we don't have a good understanding of what 
Rosser sentences are like under "natural" numberings. For a 
"usual" numbering, we don't know whether any two Rosser 
sentences are equivalent, and also how the Rosser sentences 
compare when we use different "natural" numberings. See [GS79], 
[Bu08] for some background information. 
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A somewhat well known proof of a modified form of G2 can be 
proved using a very straightforward Transparent Diagonalization. 
 
We associate the well known set of objects Q(T) to each 
reasonable theory T. Namely the set of all provably recursive 
functions of T.  
 
By reasonable here we will simply mean that T is presented as an 
r.e. theory whose language contains 0,S,+,• and whose axioms 
include PFA (polynomial function arithmetic, or bounded 
arithmetic). 1-Con(T) is formalized in a natural way using a 
natural enumeration of the å0

1 formulas. We won't go into more 
details here.  
1-Con(T) is also referred to as å1 soundness for T.  
 
G2(1-con) asserts that no reasonable theory proves its own 1-
consistency. I.e., if T is reasonable then T does not prove 1-
Con(T). 
 
We associate an important well known set of objects Q(T) to each 
reasonable theory T, namely Q(T) = the set of all provably 
recursive functions of T. f is a provably recursive function of 
T if and only if there exists e such that f = je is total, and T 
proves "je is total". We will prove by Transparent 
Diagonalization that for reasonable T, q(T) is properly included 
in Q(T + 1-Con(T)).  
 
G2/1-CON. Let T be an r.e. presented extension of PFA with 
language containing L(PFA) = (0,S,+,•). Assume T is 1-consistent. 
Then T does not prove 1-Con(T).  
 
The obvious proof of this gives the following satisfying 
information: 
 
G2/1-CON GROWTH. Let T be an r.e. presented extension of PFA 
with language containing L(PFA) = (0,S,+,•). Assume T is 1-
consistent. Then T + 1-Con(T) has properly more provably 
recursive functions than T. In fact there is a provably 
recursive function of T + 1-Con(T) that eventually strictly 
dominates every provably recursive function of T.  
 
Proof: Let T be as given, where T is 1-consistent. Define f(n) 
by looking at all partial recursive functions for which its 
index and a proof in T that it is everywhere defined can be 
found £ n, and returning the least nonnegative integer that is 
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greater than all of the values these functions have at n. Since 
T is 1-consistent, this describes a recursive function. It is 
clear that this recursive function eventually strictly dominates 
all provably recursive functions of T. Finally, note that this 
recursive function is a provably recursive function of T + 1-
Con(T). QED  
 
The origins of G2/1-con = G2 for 1-consistency are rather 
unclear. Lev Beklemishev has a paper in the 1980's about this, 
but it probably was first proved much earlier, perhaps when the 
notion of provably recursive functions of a theory first came 
into common use. That is probably in the 1950s with G. Kreisel. 
Some of the early proof theorists of that period are good 
candidates for having known about the directly straightforward 
proof of G2/1-con that we sketch now. (I don't know if Kreisel 
had this). 
  
Much of the philosophical force of G2 is already available with 
G2/1-con. This indicates that it is very worthwhile to 
investigate G2/1-con with the same intensity and detail as G2 
has been investigated.  
 
5. TOWARDS DEMYSTIFYING G2 
 
We do not have a proof of G2 by Transparent Diagonalization like 
we have for G2/1-con in section 4. It would seem that there 
ought to be such a proof.  
 
But we do have an Arguable Demystification of G2 by another 
route. First let us review for the record the usual proof of G2. 
 

USUAL MYSTERIOUS PROOF OF G2 
 
Let us review a common proof of G2. Let T be reasonable and 
consistent. Form {e: e Î We} and {e: T proves e Ï We}. The first 
formation is mysterious. The second formation is not mysterious 
because it is a straightforward and interesting strong kind of 
complementation of the first formation.  
 
But then we add some additional mystery by fixing n so that Wn = 
{e: T proves e Ï We}. Then we get that T proves  
 

1) n Î Wn « T proves n Ï Wn 
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The rest of the proof of G2 establishes crucial properties of 
these constructions, and so we do not regard it as mysterious 
(in the sense we are concerned with here).  
 
We have that T cannot prove n Ï Wn, because otherwise T proves n 
Î Wn, and T is inconsistent.  
 
But T + Con(T) does prove n Ï Wn. For arguing in T + Con(T), from 
n Î Wn we obtain T proves n Ï Wn and T proves n Î Wn, which is a 
contradiction in T + Con(T).  
 
So T + Con(T) proves n Ï Wn yet T does not prove n Ï Wn, and so T 
cannot prove Con(T).  
 

FROM ROGER'S FIXED POINT THEOREM TO G2 
 
Rogers Fixed Point Theorem asserts the following.  
 
RFPT. For any recursive f:N ® N there exists e such that je = 
jf(e).  
 
RFPT is really an immediate consequence of the earlier Kleene 
Second Recursion Theorem.  
 
KSRT. For any partial recursive F:N2 ® N there exists e such 
that ("n)(je(n) @ F(e,n)). 
  
Proof: Let H be a recursive function such that ("m,n)(F(m,n) @ 
jH(m)(n)). Set e such that ("n)(je(n) @ jH(e)(n)). Then ("n)(je(n) @ 
jH(e)(n) @ F(e,n)). QED 
 
Proof of RFPT: Define F(e,n) @ jf(e)(n). By KRST, there exists e 
such that ("n)(je(n) @ F(e,n)). Hence ("n)(je(n) @ jf(e)(n)).   
QED  
 
RFPT is not quite enough for us to derive G2. We need the 
following. 
 
EXPLICIT RFPT. For any recursive f:N ® N there exists e such 
that EFA proves je = jf(e). 
 
This is of course immediately obvious from the proof we gave of 
KRST and RRT.  
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We use EFA = exponential function arithmetic here for 
convenience and with some care surely it can be reduced 
considerably.  
 
So this proof of RFPT resembles the above proof of G2, up 
through 1), that we consider mysterious. However there is a 
difference. This proof is directly based on COMPUTATION, whereas 
1) and its derivation is based on TRUTH VALUES. What we really 
have for G2 is SENTENCES THAT TALK ABOUT THEMSELVES, where for 
KRST we have PROGRAMS THAT USE THEMSELVES. Somehow, the first 
seems more mysterious than the second, because people and 
mathematicians don't really use directly self referential 
sentences, which so easily leads to the notorious LIAR'S PARADOX 
and other catastrophes. Whereas programs that use themselves - 
well because there is no requirement that executions terminate, 
this doesn't seem really scary. In fact, there is the so called 
RASP model of computation which explicitly supports in the most 
natural way imaginable, use of a program itself as data during 
execution (although the further step of allowing modification of 
the program during execution of itself is more problematic and 
fortunately not relevant here). We exploit this point in order 
to give an arguably demystified proof of explicit KRST below.  
 
Proof of G2: Define recursive f:N ® N as follows. Let f(e) be 
natural such that each jf(e)(n) looks for a proof in T that no 
je(n) halts. Arguing in T, let je = jf(e). Then T proves  
 

je(0) halts if and only if 
there is a proof in T that je(0) does not halt 

 
Then as in the original proof of G2 above, since T is 
consistent, T does not prove je(0) diverges. Also T + Con(T) 
proves je(0) diverges. Hence T does not prove Con(T). QED 
 

RASP APPLIED TO RFPT 
 
We offer a proof using Random Access Stored Program model of 
computation. This is the same as the RAM architecture but where 
the program itself is stored in the first register, and it can 
be accessed as data during execution just like any other data. 
However, we do not allow the program to be altered during 
execution. This has also been investigated, but we don't need 
this here.  
 
We can define je in the usual way according to the RASP model 
and get an admissible enumeration of the partial recursive 
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functions. Recall that all admissible enumerations of the 
partial recursive functions are recursively isomorphic.  
 
We then get an immediate proof of RFPT by writing a RASP program 
that calls for computing f at the stored program from the 
program register, and then restarting by placing this value of f 
in the program register.  
 
Because f is total, this program will have the same outcome 
either by using the stored program normally, or by instead by 
just using the restarts.  
 
So this proof seems different than the proof of RFPT above. 
Perhaps this difference can manifest itself in new kinds of 
information about KSRT, RFPT, and G2.  
 

REMARKABLE AND EXPLICITLY REMARKABE SETS 
 
We finally turn to a slightly novel proof of G2 that can be 
construed as being suggestively organized - rather than 
radically new. 
 
The idea is to use the notion of REMARKABLE SET to push all of 
the work that can be construed as diagonalization or mysterious 
into recursion theory. Actually it is rather invisible also as 
recursion theory, almost unnoticeable. So what diagonalization 
remains is particularly friendly.   
 
DEFINITION 5.1. A is remarkable if and only if A is an r.e. set 
which agrees somewhere with every r.e. set. I.e., for every r.e. 
set B, there exists e such that e Î A « e Î B.  
 
It is very easy to see that this notion looks to be intriguing, 
but is really rather pedestrian. For what does it mean to NOT be 
remarkable? Just that A is r.e. and disagrees everywhere with 
some r.e. set. But that just means that A is r.e. with an r.e. 
complement. I.e., A is not remarkable if and only if A is not 
recursive.  
 
I.e., we have shown the following. 
 
THEOREM 5.1. A is remarkable if and only if A is r.e. and not 
recursive.  
 
Now we introduce a natural strengthening of remarkable using the 
weak system EFA of exponential function arithmetic. Other weak 
systems can be used.  
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Coming back to the definition of remarkable, it is a very common 
move in mathematics to take a notion, which asserts existence, 
and simply ask that one be very explicit about an example. Thus 
we are led quickly to the following notion.  
 
DEIFNITION 5.2. A is EFA remarkable if and only if for all r.e. 
sets B, there exists e such that EFA proves that A,B agree at e.  
 
Here we just use EFA = exponential function arithmetic, as a 
convenient way of making things very explicit.  
 
THEOREM 5.2. There is an explicitly remarkable set A. 
 
Proof: This kind of thing is very much present in recursion 
theory where one has extra effectivity. We can use a familiar 
natural complete r.e. set A. We can effectively find a place of 
agreement for any r.e. set B from the r.e. index of B. NAMELY 
THE INDEX OF B! So this is NOT EVEN REALLY A DIAGONAL ARGUMENT. 
Set A = {e: e Î We}. Let B = Wr. Then r Î A « r Î B, which is 
obviously provable in EFA. QED 
 
So the only real hint of a diagonal argument so far is just the 
definition of A = {e: e Î We}, a very familiar construction in 
elementary recursion theory.  
 
We now prove G2 by starting with any EFA remarkable A, forming 
an obviously interesting and natural set B related to A, apply 
EFA remarkability to A,B, and then argue without any trace of 
diagonalization or mystery.     
 
THEOREM 3.3. G2. 
 
Proof: Let T appropriately extend EFA, and prove Con(T). We will 
obtain a contradiction in T.  
 
Let A be EFA remarkable. Apply remarkable to A and {e: T proves 
e* Ï A}.  
 
Fix n* such that  
 

n* Î A « T proves n* Ï A 
 
is provable in EFA. Arguing in T, if n* Î A then T proves n* Î 
A, and also T proves n* Ï A, and therefore T is inconsistent. 
But still arguing in T, T is consistent (using hypothesis). 
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Hence n* Ï A. So we have obtained a proof of n* Ï A within T. So 
still arguing in T, we have the right side, and so we have n* Î 
A. This means that we have also obtained a proof of n* Î A 
within T. Thus we have a contradiction in T. QED  
 
We can look at it this way. Obviously we cannot apply any kind 
of remarkability to A and N\A, for N\A is not r.e. We would get 
there exists n such that n Î A « n Ï A, which is complete 
nonsense. However, the next "best" thing would be to apply 
remarkability to A and a "negative form of A". Now what is a 
good negative form A to use? A legal one of course. So it has to 
be r.e., Obviously  
 

T proves n* Ï A 
 
is the most obvious negative form of A. And that is exactly what 
we did use. 
 
So for all of this effort to remove mysterious diagonalization 
from the proof of G2, it would be nice to get some good solid 
additional proof theoretic information. At this point I do not 
have such a thing.  
 
I have been finding out that both the category theory community 
and the type theory community both are quite wired into at least 
some forms of G1. But they both have no clue as to the meaning 
of G2 for their subject.  
 
I have been hoping that this Remarkable Set proof is so basic as 
to be suggestive of what G2 means for category theory and type 
theory. 
 
6. TANGIBLE INCOMPLETENESS 
 
Every order invariant subset of Q[0,n]2k has a maximal square. 
nice undergraduate exercise 
 
Every order invariant subset of Q[0,n]2k has a maximal square 
which is also order invariant. seriously false 
 
Every order invariant subset of Q[0,n]2k has a maximal square 
which is order invariant over Z[0,n].  close to truth but not 
quite - refutable 
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Every order invariant subset of Q[0,n]2k has a maximal square 
which is order invariant over Z[1,n].  nice theorem of countable 
combinatorics 
 
Every order invariant subset of Q[0,n]2k has a maximal square 
whose <1 sections are order invariant over Z[1,n].  tangible 
incompleteness 
 
This last statement is provably equivalent to Con(SRP) over WKL0. 
We are writing up that reversal now. I will talk on it after I 
have a full blown manuscript because of the heavy details.  
 
There is also the stronger statement, already proved from WKL0 + 
Con(SRP) in lectures: 
 
Every order invariant subset of Q[0,n]2k has a maximal square 
whose <i sections, i < n, are order invariant over Z[i,n].  
tangible incompleteness 
 
It is also provably equivalent to Con(SRP) over WKL0.  
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