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with Addendum on Reverse Mathematical aspects 
 
In Lecture 4, we introduced Baby Emulation Theory, which is 
Emulation Theory on Q[-1,1]2. We stated the following 
theorem without proof. 
 
BABY STABLE MAXIMAL EMULATION. BSME. Every subset of Q[-
1,1]2 has a ush stable maximal emulator. 
 
BRIEF REVIEW: S is an emulator of E ⊆ Q[-1,1]2 if and only 
if the concatenation of any two elements of S is order 
equivalent to the concatenation of some two elements of E. 
ush is the upper shift which adds 1 to all nonnegative 
coordinates. Because the space Q[-1,1] is so limited, ush 
can only change a 0 to a 1 and stay in the space. Stability 
is invariance with if and only if, sometimes called 
complete invariance. We can a priori restrict to E ⊆ Q[-
1,1]2 with at most 88 elements for the front end. The back 
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end is generally infinite. We have seen that BSME is 
implicitly Π0

1 via Gödel's Completeness Theorem. 
 
GIFTED HIGH SCHOOL: I prove BSME for them where E ⊆ Q[-1,1]2 
has at most 3 elements. The proof is very effective, 
producing ush stable maximal emulators of low computational 
complexity. I don't know if this can be done effectively 
for |E| ≤ 4. Perhaps we shouldn't work on this because that 
is Gifted High School research territory.  
 
Today I am going to prove the full BSME using transfinite 
recursion of length ω1 + ω1. Very crudely, this puts BSME as 
provable in Z3. NOTE: SEE ADDENDUM. 
 
PROVACATIVE CONJECTURE. BSME can be proved in RCA0.  
 
A proof in RCA0 definitely seems to need some new theory, as 
a case study appears totally overwhelming. I'm presenting 
some new theory here, and it works for all of BSME, but it 
is highly non effective and uses a bit more than Z2. 
 
However, assuming we stick with the interval Q[-1,1] where 
ush is so weak, there are much stronger versions of BSME. 
After we prove plain old BSME, we will take up these 
stronger versions, with more or less the same proof, but 
with somewhat more transfinite recursion. We like the idea 
of starting with BSME because I think it rather exciting to 
be doing transfinite recursions on ω1 + ω1 simply to control 
ordered pairs of rational numbers with only < around. 
 
There is some elementary L theory from set theory that is 
good to separate off and bring it in at the right time in 
the proof. 
 
SOME RELEVANT TRANSFINITE RECURSION THEORY 
 
The following is a particular application of standard 
techniques in set theory going back to Gödel. 
 
THEOREM 1. There are countable powers of ω, λ0 < λ1 such 
that the following holds. For all α < λ0, ϕ(α) holds in L(λ0 
+ λ0) if and only if ϕ(α) holds in L(λ1 + λ1), where ϕ is 
first order without parameters. This is provable in a weak 
fragment of third order arithmetic.  
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Proof: Start with (L(ω1 + ω1),∈). This structure satisfies V 
= L + "there is a unique ordinal γ such that the ordinals 
γ+δ, δ < γ, comprise all of the ordinals ≥ γ". Let (A,∈) be a 
countable elementary substructure of (L(ω1 + ω1),∈). Since 
(A,∈) satisfies extensionality, it is isomorphic to some 
(A',∈), where A' is countable and transitive. Since (A',∈) 
satisfies the same sentences as (L(ω1 + ω1),∈), we see that 
A' must be L(λ0 + λ0) for some countable power of ω, λ0. 
Since the isomorphism is the identity on λ0 and maps ω1 to 
λ0, we have our conclusion for λ0 and ω1. Now we just have to 
show we can replace ω1 here with another countable power of 
ω, λ1 > λ0. We can take another countable elementary 
substructure of (L(ω1 + ω1),∈), this time making sure that 
λ0+1 is contained in it. Then collapse to some L(λ1 + λ1) as 
before. QED 
 
Theorem 1 is the core set theoretic component of what we 
need to prove BSME. The 0,1 in Q[-1,1] correspond to λ0,λ1 
in the proof below. But in say dimension 3 and the interval 
Q[-2,2]3, we encounter the need for this and more: we need 
λ0 < λ1 < λ2 < ω1 corresponding to 0,1,2, where for all α < 
λ0, ϕ(α,λ0) holds in L(λ1+λ1) if and only if ϕ(α,λ1) holds in 
L(λ2+λ2).  
 
In fact, even the weaker λ0 < λ1 < λ2 < ω1 with for all α < 
λ0, ϕ(α,λ0) holds in L(λ1) if and only if ϕ(α,λ1) holds in 
L(λ2) is a problem. It cannot be proved in ZFC even with the 
existence of an indescribable cardinal.  
 
We now apply this to first order transfinite recursion on 
pairs of countable ordinals. Of course, the most common 
such is the lexicographic ordering, but we will want 
condition ii below, and also minimize order types of the 
initial segments α2. 
 
DEFINITION 1. (α,β) <* (γ,δ) if and only if  
i. max(α,β) < max(γ,δ); or 
ii. max(α,β) = max(γ,δ) ∧ min(α,β) < min(γ,δ); or  
iii. α < β ∧ α = δ ∧ β = γ. 
Let H(α) be the order type of the set α2.  
 
THEOREM 2. <* is well ordered. H(0) = 0, H is strictly 
increasing, H is continuous.  
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i. H(α+1) = H(α) + α + 1. 
ii. H(α) ≤ α2. 
iii. If la is a double power of ω then H(λ) = λ ∧ H(λ+1) = λ 
+ λ + 1.   
 
We look at the following form of recursion on ω1

2.  
 
DEFINITION 2. R ⊆ ω1

4 is controlled if and only if 
R(α,β,γ,δ) ↔ L(max(α,β,γ,δ)+ω) satisfies ϕ(α,β,γ,δ), where ϕ 
is first order with no parameters.   
 
DEFINITION 3. Controlled <* recursion on ω1. Let R ⊆ ω1

4 be 
controlled. Define RCN(R) ⊆ ω1

2 uniquely by (α,β) ∈ RCN(R) 
if and only if (∀γ,δ)((γ,δ) <* (α,β) ∧ (γ,δ) ∈ RCN(R) → 
R(α,β,γ,δ))).  
 
THEOREM 3. Let R ⊆ ω1

4 be controlled. There exists double 
powers of ω, λ0 < λ1 < ω1 such that (∀α < λ0)(((α,λ0) ∈ 
RCN(R) ↔ (α,λ1) ∈ RCN(R)) ∧ ((λ0,α) ∈ RCN(R) ↔ (λ1,α) ∈ 
RCN(R))).  
 
Proof: We apply Theorem 1. It suffices to prove that for 
controlled R ⊆ ω1

4 there are ϕ,ψ such that the following 
holds. For countable double powers γ of ω and α < γ, (α,γ) ∈ 
RCN(R) ↔ ϕ(α) holds in L(γ+γ), and (γ,α) ∈ RCN(R) ↔ ψ(α) 
holds in L(γ+γ). For countable double powers γ of ω, it is 
easy to see how to uniformly define RCN(R) at α,β < γ, in 
L(γ). Then we can clearly define RCN(R) at α < γ and γ 
uniformly in L(γ+γ). QED   
 
PROOF OF BSME 
 
BABY STABLE MAXIMAL EMULATION. BSME. Every subset of Q[-
1,1]2 has a ush stable maximal emulator. 
 
Fix E ⊆ Q[-1,1]2. The only role that E plays is to provide 
us with a quantifier free formula ϕ(p,q,r,s) in < only, 
without parameters, so that the S ⊆ Q[-1,1]2 we are looking 
for must satisfy (∀p,q,r,s)((p,q),(r,s) ∈ S → ϕ(p,q,r,s)). 
In fact, maximally satisfy this, and also be ush stable.  
 
But there aren't any ordinals here let alone a transfinite 
recursion on pairs of ordinals as in Theorem 3. So the 
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first thing we do is to bring ordinals into the picture. In 
particular, we form the lexicographic product ω1 × Q[0,1). 
Thus (α,p) <' (β,q) ↔ α < β ∨ (α = β ∧ p < q). This linear 
ordering is dense with the left endpoint (0,0), but has no 
right endpoint.  
 
We are going to build the desired maximal emulator by 
transfinite recursion of the kind in Theorem 3. Right now 
of course, <' is not well ordered, but let's pretend it is 
for just a second. How do we build a maximal emulator by 
transfinite recursion on pairs? By GREED. If we have a well 
ordering of the pairs, then greed says that we put a pair 
in S if and only if it will still be an emulator after we 
put it in. Otherwise we pass it up and move on to the next 
pair along the well ordering. Greedy emulators are 
obviously maximal emulators, and even much better than a 
typical maximal emulator. Being an emulator is defined as 
above using ϕ. Here ϕ must use <'.  
 
But we can't use <' to perform the transfinite recursion 
because <' is ill founded. Of course the ill foundedness is 
coming from the second lexicographic factor, Q[0,1). So we 
fix any effectively given enumeration without repetition 0 
= p0,p1,... of Q[0,1). We now work with <* given by (α,p) <* 
(β,q) ↔ α < β ∨ (α = β ∧ (∃i<j)(p = pi ∧ q = pj)). Note that 
<* is a well ordering. 
 
We now use <* to make the greedy construction of the 
maximal emulator S ⊆ ω1 × Q[0,1) identifying (ω1 × 
Q[0,1),<*) with (ω1,<) by the obvious unique isomorphism. 
But what has become of the crucial 4-ary relation R that we 
always use for the kind of transfinite recursion on pairs 
we are doing? It is as before for emulation, using <', 
where we go from ω onto Q[0,1). I.e., from i to pi. Thus the 
4-ary relation R is easily controlled as in Definition 2 
above.   
 
So we now have a maximal emulator S = RCN(R) ⊆ ω1 × Q[0,1) 
and limits (λ0,0),(λ1,0) in <*, such that for all (α,p) <* 
(λ0,0), ((α,p),(λ0,0)) ∈ S ↔ ((α,p),(λ1,0)) ∈ S, and 
((λ0,0),(α,p)) ∈ S ↔ ((λ1,0),(α,p)) ∈ S. It is important to 
note that the limits in <* are exactly the pairs other than 
(0,0), whose second coordinate 0, and also (α,p) <* (λ0,0) 
↔ α < λ0.  
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(ω1 × Q[0,1),<') is a dense linear ordering and we can take 
the initial segment ending with the right endpoint (λ1,0), 
to form (ω1 × Q[0,1),<')|≤'(λ1,0) which is dense with both 
endpoints present. Note that S is a maximal emulator here 
using the original ϕ(p,q,r,s). If we consider the ush to be 
just like the real ush, only here (λ0,0) is considered zero 
and (λ1,0) is considered one, then we have obtained an 
uncountable version of BSME exactly, with this S. Any 
countable elementary substructure gives us the original 
countable version in the rationals.    
 
Now what about the promised stronger forms of BSME?  
 
DEFINITION 4. S is an r-emulator of E ⊆ Q[-1,1]k if and only 
if S ⊆ Q[-1,1]k, where the concatenation of any r elements 
of S is order equivalent to the concatenation of some r 
elements of E.    
 
STABLE MAXIMAL EMULATION/Q[-1,1]. BSME/Q[-1,1]. Every 
subset of Q[-1,1]k has a ush stable maximal r-emulator. 
 
Thus we are using order equivalence for kr-tuples. The use 
of r-emulators instead of emulators = 2-emulators does not 
change the proof at all. The r comes in only in the greedy 
definition of an r-emulator, instead of just an emulator. 
In the greedy construction, we need to preserve being an r-
emulator, not just being an emulator.  
 
There is a difference in the proofs when we move from 
dimension k = 2 to dimension k ≥ 3. We use a k dimensional 
form of Theorem 3. Here the recursion involved in the 
greedy construction used to be of length λ to handle pairs 
(α,p),(β,p), α,β < λ, λ a double power of ω, but then to 
handle pairs (λ,0),(α,p), α < λ, we need length roughly λ+α. 
So we get to  length λ+λ to handle all pairs 
(λ,0),(α,p),(p,α), α < λ. So for 3 dimensions, the same line 
of reasoning leads to a transfinite recursion of length λ × 
3. And for k dimensions, length λ × k.  
 
So in this way, for full BSME/Q[-1,1], we will use 
transfinite recursion of length ω1 × ω.   
 
ADENDUM 
REVERSE MATHEMATICAL ASPECTS 
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added after Lecture 
May 12, 2021 
 
So I have given a proof here of BSME (first with k = r = 2 
and then for k,r ≥ 2), and the question is where does this 
proof reside? An obvious answer is of course in Z3 = third 
order arithmetic. But that seems like great overkill. It is 
obviously much much closer to Z2. If the proof just used 
transfinite recursion on ω1 in nice form, then probably it 
could be relatively easily formalized in say WKL0 + Con(Z2). 
But there is more transfinite recursion going on than that. 
Namely we wrote "using transfinite recursion on ω1 + ω1" and 
"using transfinite recursion on ω1 × k" and "using 
transfinite recursion on ω1 × ω".  
 
But what kind of RM framework would make proper sense of 
this assertion? Something much more informative than Z3. One 
could look for fragments of Z3 and that is in fact probably 
quite a reasonable idea here. I don't think there has been 
much work on fragments of Z3 mainly because there is not so 
much mathematics that is profitably formulated in the 
language of Z3 rather than the language of Z2. I haven't 
thought much about the appropriate weak forms of 
comprehension and other principles in the Z3 fragment 
context. But here we seem to be naturally using ω1 to prove 
a theorem in discrete mathematics.  
 
We can also envision using fragments of set theory for this 
purpose. We could have a Reverse Set Theory where the main 
systems are fragments of ZF\℘. Then one can directly talk 
of the L(α)'s, α countable.  
 
But when we come to "transfinite recursion on ω1" and 
"transfinite recursion on ω1 × k", there is a problem in 
using a set theoretic base theory with too much 
replacement. For with replacement one gets immediate all of 
this transfinite recursion just from the existence of ω1. 
So a plausible interesting base theory for this might be 
the following.  
 
1. extensionality. 
2. pairing. 
3. union. 
4. Δ0-separation 
5. infinity 
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6. ω-collection 
 
Then, for example, ∃L(ω1) doesn't imply ∃L(ω1 + ω1) doesn't 
imply ∃L(ω1 × 3), and so forth. Or one can more abstractly 
define what we mean by "transfinite recursion on ω1 × k", 
for various k ≥ 1.  
 
We now come to a way of avoiding this issue entirely, but 
it is not completely satisfactory. We can focus on the 
application(s) only of transfinite recursion on the ω1 × k, 
like Theorem 3 (and adaptions to higher dimensions). And 
these applications are entirely COUNTABLE. They clearly 
fall totally within the purview of my ordinary RM.  
 
This leads to an interesting area of RM that has had 
limited exploration. The effective base theory would be my 
ATR0, particularly after the main preliminary result that of 
course just having transfinite recursions along any well 
ordering is equivalent to ATR0 over my RCA0 base theory. But 
from the above developments, there is clearly of form of 
transfinite recursion that is very fundamental, namely 
transfinite recursion with respect to order invariant 
relations R. This is equivalent to parameterless ATR0 over 
RCA0. Parameterless ATR0 doesn't appear much in RM as far as 
I know.  
 
I haven't thought it through, but it would seem that there 
is probably a very satisfying graph theoretic or hypergraph 
theoretic interpretation of transfinite recursion, where 
the condition of order invariance is natural and 
fundamental. This might profitably bring parameterless ATR0 
into RM.  
 
In any case, it seems like there is an area of order 
invariant or countable transfinite recursion, in the 
countable. I wrote  
 
https://cpb-us-
w2.wpmucdn.com/u.osu.edu/dist/1/1952/files/2014/01/MetaComp
100701-1h9ey86.pdf  
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3133675 
 
and not sure it has been followed up properly. It has the 
following result: 
 
THEOREM 4.5. The following are provably equivalent over 
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RCA0.  
i) ATR0;  
ii) For any two countable metric spaces, there is a 
continuous embedding from one into the other;  
iii) For any two sets of rationals, there is a continuous 
embedding from one into the other;  
iv) For any two compact well ordered sets of rationals, 
there is a continuous embedding from one into the other;  
v) For any two countable well orderings with greatest 
elements, there is an order continuous embedding from one 
into the other.  
vi) For any two countable well orderings, there is an order 
continuous embedding from one into the other.  
 
The developments in this talk suggest a big realm of 
statements concerning the relationship between various 
transfinite recursions of different length and how they 
cohere. The strengths involved would go from maybe just 
ATR0 to large cardinals. And there would also be 
paramterless versions, based on how elemental the front 
ends are.  
 
In any case, when we go to higher dimensions and longer 
intervals, we run quickly into infinitely many uncountable 
cardinals, ZFC, and large cardinals. So looking for ways to 
metamathematically analyze "transfinite recursion on ω1" 
seem less compelling.  
 
 
 


