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I have reworked some of the details of Baby Emulation 
Theory in the previous Gent Lecture Notes Number 3. So 
let's start the treatment of Baby Emulation Theory 
systematically from scratch.  
 
Baby Emulation Theory lives in Q[-1,1]2. Here Q[-1,1] is Q ∩ 
[-1,1]. We only use these four notions.  
 
1. Order equivalence of x,y ∈ Q4.  
2. S ⊆ Q[-1,1]2 is an emulator of E ⊆ Q[-1,1]2. 
3. S ⊆ Q[-1,1]2 is a maximal emulator of E ⊆ Q[-1,1]2. 
4. The upper shift of S ⊆ Q[-1,1]2.  
 
Gifted Youth can be walked through definition 1 by examples 
in dimensions 2,3,4: 
 
DEFINITION 1. x,y ∈ Q4 are order equivalent if and only if 
(∀i,j)(1 ≤ i,j ≤ 4 → (xi < xj ↔ yi < yj)). 
 
We are older and can handle this definition: 
 
DEFINITION 2. x,y ∈ Qk are order equivalent if and only if 
(∀i,j)(1 ≤ i,j ≤ k → (xi < xj ↔ yi < yj)). 
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In Baby Emulation Theory, we only use order equivalence for 
x,y ∈ Q[-1,1]4.  
 
Let ot(k) be the number of cosets of order equivalence on 
Qk. There is a lot of work on ot(k) in the combinatorics 
community. If you are interested, look up, say, 
"preferential arrangements", "races with ties", "fubini 
numbers". Also the site https://oeis.org/A000670 from 
Sloane's online encyclopedia of integer sequences site. We 
let ot(k) be the number of cosets of order equivalence on 
Qk. We call the cosets the order types of k-tuples. ot(1) = 
1, ot(2) = 3, ot(3) = 13, ot(4) = 75. From the site: 
 
1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 
1622632573, 28091567595, 526858348381, 10641342970443, 
230283190977853, 5315654681981355, 130370767029135901, 
3385534663256845323, 92801587319328411133, 
2677687796244384203115 
 
We now come to the crucial definition.  
 
DEFINITION 3. An emulator of E ⊆ ∈ Q[-1,1]2 is an S ⊆ Q[-
1,1]2 such that the concatenation of any two elements of S 
is order equivalent to the concatenation of some two 
elements of E.  
 
I.e., any two elements of S look like some two elements of 
E. 
 
Note that there appears to be two uses of infinite sets in 
the definition of emulator. Actually there is only one real 
one, S, the emulator. But E, the set being emulated, isn't 
really infinite in light of the following. 
 
THEOREM 1. Every E ⊆ Q[-1,1]2 has exactly the same emulators 
as some E' ⊆ E with at most 150 elements.  
 
Proof: The number of cosets under order equivalence on Q4 is 
exactly ot(4) = 75. Let W1,...,Wr, 0 ≤ r ≤ 75, be an 
enumeration without repetition of the cosets of the various 
x•y, x,y ∈ E. Now choose z1,...,z2r ∈ E such that each z2i-
1•z2i ∈ Wi ∩ E. Then z1,...,z2r has the same emulsators as E. 
QED 
 
There are lots of opportunities for reducing the number 150 
in Theorem 1. The most obvious is to show that we need only 
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consider certain order types of 4-tuples for being an 
emulation of x1,...,xm ∈ Q[-1,1]2. In particular, we exploit 
x•y OE z•w ↔ y•x OE w•z, where OE is "order equivalent". 
 
In particular, we need only use order types (p,q,r,s) where 
p ≤ r. And then we should be able to reduce this somewhat 
further, which we haven't really investigated. Here is the 
list using coordinates from 1,2,3,4. Here we list all 75 
except only half of the permutations, the ones with p ≤ r. 
We put an x against those without p ≤ r. So the total number 
of order types of 4-tuples with p ≤ r is 12 + 7 + 7 + 7 + 4 
+ 3 + 3 + 1 = 12 + 21 + 11 = 44.  
 
1234 
1243 
1324 
1342 
1423 
1432 
2134 
2143 
2341 
2431 
3142 
3241 
 
1123 
1132 
1213 
1312 
1231 
1321 
2113 x 
3112 x 
2131 
3121 x 
2311 x 
3211 x 
 
2213 x 
2231 
2123 
2321 
2312 x 
2132 
1223 
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3221 x 
1232 
3212 x 
1322 
3122 x 
 
3312 x 
3321 x 
3132 
3231 
3123 x                                                           
3213 x 
1332 
2331 
1323 
2313 x 
1233 
2133 
 
1122 
1212 
1221 
2112 x 
2121 
2211 x                                                                                                                                                                                                                                                                                            
 
1112 
1121 
1211 
2111 x 
 
2221 
2212 x 
2122 
1222 
 
1111 
 
THEOREM 2. Every E ⊆ Q[-1,1]2 has exactly the same emulators 
as some E' ⊆ E with at most 88 elements.  
 
I think that some clever computer algorithms should help in 
reducing the number 88. I am quite curious to know what the 
least number is that can be used.  
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DEFINITION 4. A maximal emulator of E ⊆ Q[-1,1]2, m ≥ 0, is 
an emulator of E ⊆ Q[-1,1]2 which is not a proper subset of 
any emulator of E ⊆ Q[-1,1]2.   
 
BABY MAXIMAL EMULATION. BME. Every E ⊆ Q[-1,1]2 has a 
maximal emulator. The maximal emulator can be taken to be 
elementary recursive.  
 
Proof: Let E ⊆ Q[-1,1]2, which we assume is nonempty. By 
Theorem 2, let x1,...,x88 ∈ E have the same emulators as E. 
If you are greedy you know how to construct this. Let 
y1,y2,... be an enumeration without repetition of all of Q[-
1,1]2. Then collect some of the y's into a set S ⊆ Q[-1,1]2 
as follows. Suppose we have put some of the y1,...,yi, i ≥ 
0, in S, so that we so far have an emulator of {x1,...,x88} 
⊆ Q[-1,1]2. Put yi+1 in S if and only if we still have an 
emulator of E ⊆ Q[-1,1]2. Otherwise reject yi+1. and move on 
to yi+2. Clearly this is effective, assuming the y1,y2,... is 
effective, because you have merely to see if certain finite 
sets are emulators of fixed E ⊆ Q[-1,1]2. That does require 
that, at least superficially, we have to look to see if S ∪ 
{yi+1} is an emulator of {x1,...,x88} ⊆ Q[-1,1]2 by looking at 
all pairs (z,yi+1), z ∈ S so far, and checking to see if it 
is order equivalent to some xi•xj. QED 
 
There is a related computational complexity issue. Suppose 
E is given by a finite list from Q[-1,1]2. We look for a 
maximal emulator SE, and we want to understand the 
computational complexity of {(E,z): z ∈ SE}. This moves 
somewhere into low level PTIME. So this does seem to be of 
possible interest for computational complexity.  
 
We now come to the last definition needed for BME. 
 
DEFINITION 5. The upper shift ush:Q2 → Q2 is defined as 
follows. ush(x) is the result of adding 1 to all 
nonnegative coordinates of x. The upper shift ush:℘(Q2) → 
℘(Q2) is given by ush(S) = {ush(x): x ∈ X}.  
 
We now observe BABY INVARIANT MAXIMAL EMULATION. BIME. 
Every subset of Q[-1,1]2 has a maximal emulator containing 
its upper shift intersect Q[-1,1]2.  
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There are some weak things about BIME. Note that in order 
for both x,ush(x) to lie in the ambient space Q[-1,1]2, we 
must have max(x) = 0. Hence as far as BIME is concerned, 
only 0 gets shifted by 1 (from 0 to 1), and negative 
coordinates get left alone.  
 
For the other weak thing about BIME, first note that the 
condition "S ⊇ ush(S) ∩ Q[-1,1]2" is equivalent to the 
following: 

#) (0,0) ∈ S → (1,1) ∈ S 
For p < 0, (p,0) ∈ S → (p,1) ∈ S 
For p < 0, (0,p) ∈ S → (1,p) ∈ S 

 
However, this falls quite short of the following stronger 
condition: 

##) (0,0) ∈ S ↔ (1,1) ∈ S 
For p < 0, (p,0) ∈ S ↔ (p,1) ∈ S 
For p < 0, (0,p) ∈ S ↔ (1,p) ∈ S 

  
The conditions that we are placing on S are best thought of 
in the context of general invariance which we now present.  
 
DEFINITION 6. Let X be a set (ambient space) and R be a set 
of ordered pairs (binary relation). We do not assume that R 
⊆ X2. S ⊆ X is R invariant if and only if for all x R y 
with x,y ∈ X, we have x ∈ S → y ∈ S.  
 
Notice the role of the ambient space X in Definition 5. 
There is an important stronger form of invariance sometimes 
called complete invariance. Here we use the word "stable".  
 
DEFINITION 7. Let X be a set (ambient space) and R be a set 
of ordered pairs (binary relation). We do not assume that R 
⊆ X2. S ⊆ X is R stable if and only if for all x R y with 
x,y ∈ X, we have x ∈ S ↔ y ∈ S.  
 
Thus in invariance, membership is preserved, whereas in 
stability, truth value of membership is preserved.  
 
In Baby Emulation Theory we actually use stability with 
respect to functions. With functions treated as sets of 
ordered pairs, this is a special case of stability with 
respect to a relation. We spell this out now. 
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DEFINITION 8. Let X be a set (ambient space) and f be a 
function (from anywhere to anywhere). S ⊆ X is f invariant 
if and only if for all x,f(x) ∈ X, we have x ∈ S → f(x) ∈ 
S.  
 
DEFINITION 9. Let X be a set (ambient space) and f be a 
function (from anywhere to anywhere). S ⊆ X is f stable if 
and only if for all x,f(x) ∈ X, we have x ∈ S ↔ f(x) ∈ S.  
 
We now restate BIME and also present the naturally stronger 
BSME (baby stable maximal emulation). 
 
BABY INVARIANT MAXIMAL EMULATION. BIME. Every subset of Q[-
1,1]2 has a ush invariant maximal emulator.  
 
BABY STABLE MAXIMAL EMULATION. BSME. Every subset of Q[-
1,1]2 has a ush stable maximal emulator.  
 
For Gifted High School we have notes first walking them 
through this: 
 
EASY BABY EMULATION. Every subset of Q[-1,1]2 with at most 
two elements has a ush stable maximal emulator. The 
construction can be made computable.  
 
And then seriously walk through more of this, which has 
some real substance - although purely elementary: 
 
ADVANCED BABY EMULATION. Every subset of Q[-1,1]2 with at 
most three elements has a ush stable maximal emulator. The 
construction can be made computable.  
 
This is proved by a painstaking organization and analysis 
of the finitely many (although large) number of cases 
involved. See Downloadable Manuscripts, #111.  
 
However, using this approach becomes rather daunting for 
four element subsets of Q[-1,1]2, and daunting beyond 
daunting for five element subsets of Q[-1,1]2. Recall that 
Theorem 2 talks of ≤88 element subsets of Q[-1,1]2.    
 
We will prove full BSME using a transfinite recursion of 
length ω1 × 3. This is a bit beyond Z2 or ZFC\P. But it 
doesn't provide a computable ush stable maximal emulator.  
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QUESTION 1. Does every subset of Q[-1,1]2 have a recursive 
ush stable maximal emulator? How about four element 
subsets?  
 
I have my doubts that I can get a reversal going for BSME. 
So we have the obviously related question: 
 
QUESTION 2. Is BSME provable in Z2? Provable in ACA0? 
Provable in RCA0? 
 
BSME calls for a generally infinite object - the ush stable 
maximal emulator - and so at least ostensibly, leaves much 
to be desired in terms of Tangibility. However, the essence 
of the matter is totally finite combinatorics. This is 
because BSME really calls for a countable models of 
sentences in predicate calculus and we can apply the Gödel 
Completeness Theorem.   
 
THEOREM 3. For each instance of BSME there is a very 
effectively constructed sentence in first order predicate 
calculus such that the BSME instance is easily seen to be 
equivalent to the existence of a countable model of that 
sentence. This equivalence proof can be carried out in RCA0. 
Thus each instance of BSME is provably equivalent, over 
WKL0, to a Π0

1 sentence via Gödel's Completeness Theorem. 
The implication here to the Π0

1 sentence can be carried out 
in RCA0, whereas the converse here from the Π0

1 sentence is 
carried out in WKL0. Also this applies to BSME itself. 
Hence the ush stable maximal emulator in BSME can be taken 
to be recursive in the Turing jump.  
 
Proof: Let x1,...,xm ∈ Q[-1,1]2. The language is <,P,-1,0,1, 
where <,P are binary relation symbols. The axioms are  
i. < is a dense linear ordering with two endpoints -1,1, 
left and right. 
ii. Every pair from P, concatenated, is order equivalent to 
some xi,xj, concatenated. 
iii. If P ∪ {(x,y)} has ii then P(x,y).  
iv. P(0,0) ↔ P(1,1). 
v. (∀x < 0)(P(0,x) ↔ P(1,x)). 
vi. (∀x < 0)(P(x,0) ↔ P(x,1)). 
 
Note that i is ∀∀∃, ii is ∀∀∀∀, and iii is ∀∀∃∃∃∃.  
 
Let M = (A,<,P,-1,0,1) be a model of these axioms. Let h:A 
→ Q[-1,1] be any order preserving bijection mapping the -
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1,0,1 of the model to -1,0,1. Then h(P) is a ush stable 
maximal emulator of x1,...,xm. QED 
 
We leave you with some BSME examples.  
 
Obviously, ∅ is vacuously an emulator of any sequence, and 
is a maximal emulator of the empty sequence.  
 
EX1. {(0,0)}. The emulators are ∅ and singletons {(p,p)}, -
1 ≤ p ≤ 1. The maximal emulators are these singletons. {(-
1,-1)} is ush stable.  
 
EX2. {(0,1)}. The emulators are ∅ and singletons {(p,q)}, -
1 ≤ p < q ≤ 1. The maximal emulators are these 
singletons. {(-1,-1/2)} is ush stable.  
 
EX3. {(0,0),(1,1)}. The emulators are the subsets of 
{(p,p): -1 ≤ p ≤ 1}. Exactly one is maximal, {(p,p): -1 ≤ p 
≤ 1}. This set is ush stable.   
 
EX4. {(0,0),(0,1)}. The emulators are the sets that are 
contained in some {p} × Q[p,1], -1 ≤ p < 1. The maximal 
emulators are the sets {p} × Q[p,1], -1 ≤ p ≤ 1. {-1} × Q[-
1,1] is ush stable. 
 
EX5. {(0,2/5),(1/5,3/5),(2/5,4/5),(3/5,1)}. The emulators 
are the graphs of strictly increasing partial f:Q[0,1) → 
Q(0,1], where each defined f(x) > x. There are continuumly 
many maximal emulators. Let f be such that 0 ∉ rng(f) and 
f(1/2) = 1. Then f is ush stable.  
 
EX6. E = {(1/6,1/4),(1/7,1/3),(0,1/5),(1/2,1)}. The idea 
behind E is that no coordinate of an element of E is a 
coordinate of any other element of E, and the pairs of 
elements are in general position relative to that 
restriction. Then S is an emulator of E ⊆  Q[-1,1]2 if and 
only if S ⊆ Q[-1,1]2< and no coordinate of an element of S is 
a coordinate of any other element of S. Let S be a maximal 
emulator of E which contains (0,1). Then S is ush stable.  
 
EX7. {(p,q) ∈ Q[-1,1]2: -1 ≤ p < 1/2 < q ≤ 1}. We claim that 
S is an emulator of E ⊆  Q[-1,1]2 if and only if S ⊆  Q[-
1,1]2< and the first coordinate of every element of S is 
less than the second coordinate of every element of S.  
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Let S be a maximal emulator of E. Obviously S is nonempty. 
Let α  be the sup of the first terms of the pairs in S and 
β be the inf of the second terms of the pairs in S. Clearly 
α ≤ β. If α < β then S ∪ {(p,q)} is an emulator of E where 
α < p < q < β, violating the maximality of S. Hence α = β.  
 
The maximal emulators are the sets S = 
i. {(p,q) ∈ Q[0,1]2: -1 ≤ p ≤ α < q ≤ 1}, where α is a real 
number in [-1,1).  
ii. {(p,q) ∈ Q[0,1]2: -1 ≤ p < α ≤ q ≤ 1}, where α is a real 
number in (-1,1].  
 
If α < 0 then these sets are ush stable. 
 
 


