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ABSTRACT. We use finite lists of closed line segments to 
obtain Π0

2 independence results at the level of the Kruskal 
and Extended Kruskal theorems. Also see the Addendum.  
 
There are by now a large number of examples of Tangible 
Incompleteness from PA (Peano Arithmetic), with the 
original examples being Goodstein Sequences (discovered in 
[Go44], Incompleteness established in [KP82]), and the 
Paris/Harrington Ramsey Theorem (discovered and established 
in [PH77]). There have been far fewer beyond what is 
usually referred to as Impredicativity, with associated 
proof theoretic ordinal Γ0, starting with  
 
i. My finite form of Kruskal's theorem (KT) and variants 
with labels and structure. These have a much higher 
associated proof theoretic ordinal starting at Θ(Ωω)(0). 
Original [Fr81]. 
ii. My Extended Kruskal's theorem (EKT), with a yet higher 
associated proof theoretic ordinal Θ(Ωω)(0). Original 
[Fr82]. 
iii. My finite form of the Graph Minor Theorem (GMT), also 
with θ(Ωω)(0). but as a lower bound only, with [KR18] 
establishing a somewhat higher upper bound). [FRS87]. 
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In every new substantial result in Intangible 
Incompleteness, there are some new interesting and 
desirable features, although some other features present in 
other such results may be lacking in the new ones. For 
here, the connections with vividly clear elementary plane 
geometry are a plus. Others are strong on numerics. It is 
the general expectation that at least with regards to PA, 
the opportunities for new Intangible Incompleteness are 
vast, having seen only a fairly short term development by 
most mathematical standards. We expect more or less the 
same for these higher levels referred to above, at the 
level of at most iterated or transfinitely iterated 
inductive definitions, but probably at a more limited pace. 
 
The idea of making lists of objects and finding mappings 
sending parts of the list into other parts of the list is 
inspired by my work in [Fr01]. There I look at sufficiently 
long sequences drawn from a fixed finite alphabet, and ask 
for i < j such that xi,...,x2i is a subsequence of 
xj,...,x2j. The longest sequence with no such i < j, using k 
letters, is called n(k). n(1) = 1, n(2) = 11, and n(3) is 
ridiculously large, well into Ackermann numbers. n(3) > 
A7198(158386) is proved there with the help of computer 
investigations by Randall Dougherty. That is the 7,198th 
Ackermann function at 159,386. Subsequently I remember 
claiming that n(4) is bigger than iterating Ak(k) a lot 
starting at 1. How many times? A5(5) times. That all n(k) 
exists is just beyond multi recursion, and descent 
recursion through <ωω^ω. The full theorem for all finite sets 
is provable in IΣ3 but not in IΣ2. So there are a myriad of 
huge phase transitions between positive integers here.  
 
A natural step in this research is to change the xi,...,x2i 
and xj,...,x2j. For example, to xi,...,x3i and xj,...,x3j. How 
does that effect early values of n(k)? Of course, there is 
the obvious possibility of using asymmetric numbers here, 
something I have never even considered. When is it even 
true, and when does it get quantitatively easy, using 
xi,...,xf(i) and xj,...,xg(j)?  
 
An orthogonal step is to ask for i1 < ... < im such that 
(xi_1,...x2i_n),(xi_2,...,x2i_2),...,(xi_m,...,x2i_m) forms a 
chain each being a subsequence of the next? One does not 
have to be using intervals j,...,2j as we are, here. 
 
Now bear in mind that this is only using long sequences 
drawn from a fixed finite set. Here we want to talk about 
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using long sequences drawn from geometric objects in the 
plane. My work from the 80's involved long finite sequences 
drawn from finite trees and finite graphs, and I just 
compared a single term with a single later term. But we 
want the terms of the sequences to be objects simpler than 
trees.   
 
By a segment we will mean a closed line segment in the 
plane with distinct endpoints. The basic object we are 
interested in here is that of a finite list of segments, 
S1,...,Sn. We look at a finite union V of segments as a 
topological subspace of ℜ2. We have the usual notions of 
connected and simply connected.  
 
V will always refer to a nonempty finite union of segments. 
It is convenient to remove crossings in V and redundancies 
in V. The former is where we cross like in an "X". 
Redundancies occur when two segments have a segment in 
common. There is a standard procedure to remove both of 
these nuisances, leading to a unique reduction RED(V).  
  
THEOREM 1. (Well known). V is connected and simply 
connected if and only if RED(V) becomes a rooted tree when 
some endpoint in RED(V) is designated as the root, in the 
sense of graph theory, if and only if RED(V) becomes a 
rooted tree when any endpoint in RED(V) is designated as 
the root, in the sense of graph theory. (Full precise 
explanation of this is well known).  
 
Note that if V is merely simply connected then we 
analogously have a forest.  
 
Now there is a particularly simple SEQUENTIAL approach to 
all of this that gets straight to the heart of the matter 
for this approach to Incompleteness. We now write V for 
finite sequences S1,...,Sn of segments. We say that V is 
outward if and only if    
 

for all 1 ≤ i ≤ n, |Si ∩ (S1 ∪ ... ∪ Si-1)| ≤ 1 
 
THEOREM 2. (Well known). V is simply connected if V = S1 ∪ 
... ∪ Sn for some outward list S1,...,Sn.  
 
We now come to a finite form of Kruskal's Theorem (no 
labels). 
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THEOREM 3. Let k ≥ 1. In every sufficiently long outward 
list of segments S1,...,Sn, there exists k ≤ i < j ≤ n such 
that Si ∪ ... ∪ S2i is continuously embeddable into Sj ∪ ... 
∪ S2j.  
 
Proof: Restate this purely combinatorially so we can assume 
that it is false and apply Weak Konig's Lemma. We obtain an 
infinite sequence S1,S2,... of segments such that for no k ≤ 
i < j do we have Si ∪ ... ∪ S2i continuously embeddable into 
Sj ∪ ... ∪ S2j. But now look at the infinite sequence Sk ∪ 
... ∪ S2k, Sk+1 ∪ ... ∪ S2k+2, ... . These are forests, and 
hence by Kruskal's theorem for forests, one is continuously 
embeddable into a later one, which is a contradiction. QED 
 
THEOREM 4. Theorem 3 implies my finite form of Kruskal's 
Theorem (no labels) over RCA0. Theorem 3 is provably 
equivalent to no elementary recursive descending sequences 
through every initial segment of θ(Ωω)(0) and equivalently, 
Π1

2-BI0.  
 
Proof: It is very convenient to use a known result that 
Kruskal's theorem and its finite forms (no labels) are 
equivalent to those with uniform valence (uniform 
splitting) and finitely many labels with label 
preservation. We only need two labels for this purpose. Let 
k,r ≥ 1. Let T1,...,Tn be a sufficiently long sequence of 
finite trees of uniform valence ≤ r, where |Ti| ≤ i. We want 
to prove that there exists k ≤ i < j ≤ n such that Ti is inf 
preserving embeddable into Tj. Also one of my forms has |Ti| 
= i rather than |Ti| ≤ i, which is more convenient here. 
Note that T1,...,Tk-1 have no role here just like when we 
construct the S's, S1,...,Sk-1 also play no role.  
 
If we could just be constructing Sk ∪ ... ∪ S2k, S2k+1 ∪ ... 
∪ S4k+2, and so forth, we would have no interference, and 
just make these exactly Tk, Tk+1, ... .  So we want to make 
sure that these unions, if they are anywhere near being 
close together, let alone overlap, cannot have the inf 
preserving embedding. The idea is to use uniform valence 
r+1 and the second label, to enforce "no close together". 
Also there is no reason to be wedded to the same k so we 
can start putting this extra information in comfortably.  
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We are deriving the finite form of Kruskal's Theorem with 
no labels, but we are using UNSTRUCTURED trees. However, is 
known to be as strong as using STRUCTURED trees. QED 
 
We now come to trivalent graphs. A trivalent graph is an 
undirected graph with no loops, every vertex has out degree 
at most 3.  
 
THEOREM 5. In any infinite sequence of finite trivalent 
graphs, one is continuously embeddable into a later one as 
topological spaces.  
 
This is an immediate consequence of the Graph Minor Theorem 
because for trivalent graphs, minor inclusion is the same 
as continuously embeddable. QED 
 
In [FRS87], Paul Seymour claimed in print that the proof 
EKT (my extended Kruskal's theorem) from GMT can be refined 
to give a proof of EKT from the Trivalent Graph Theorem. 
Recall that my EKT corresponds to Π1

1-CA0 or finitely 
iterated induction definitions. I am in contact with him 
about this. 
 
We continue to use sequences of segments, S1,...,Sn. Only 
now we use trivalent. V is trivalent if and only if no four 
segments from S1,...,Sn have exactly one point in common.  
 
THEOREM 6. Let k ≥ 1. In every sufficiently long trivalent 
list of segments S1,...,Sn, there exists k ≤ i < j ≤ n such 
that Si ∪ ... ∪ S2i is continuously embeddable into Sj ∪ ... 
∪ S2j.  
 
To imitate the proof that this is strong, we should have 
some hierarchy here to make a similar no interference 
argument. In [FRS87] there was the hierarchy of tree width. 
More tree width climbs up the IDn. There should be an 
analogous thing for trivalent graphs. In any case this no 
interference argument should be a technical detail that is 
easily handled. So we would have  
 
THEOREM 7. Theorem 6 is provably equivalent no elementary 
recursive descending sequences through Θ(Ωω)(0) and 
equivalently, 1-Con(Π1

1-CA0). 
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NOTE: There is another manuscript from the 1980's, also 
handwritten notes concerning Kruskal's theorem. I don't see 
a date on it, and my copy has two sections, sections 2 and 
3. I think I might have planned a section 1 at the time. 
The first section is entitled "Some proofs of Kruskal's 
theorem and its restrictions", 53 pages. The second section 
is entitled "Some ordinal calculations for Kruskal's 
theorem and its restrictions", 110 pages. I think that 
Andreas Weiermann has a copy of these two items.  
 
   
ADDENDUM: AN alternative to the finite forms of Kruskal 
type Theorems and trivalent graph theorem discussed above 



	 7	

using line segments, we can instead proceed purely 
combinatorially.  
 
THEOREM 7. Let n >> k ≥ 1, and T = (T,<) be a sufficiently 
large rooted tree with vertices 1,...,n. There exists k ≤ 
i,j ≤ n such that T|{i,...,2i} is inf preserving embeddable 
into T|{j,...,2j}.  
 
It is also convenient to work with labels, which removes 
the need for this inert k.  
 
THEOREM 8. Let n >> k ≥ 1, and T = (T,<) be a sufficiently 
large rooted tree with {1,...,k} labeled vertices 1,...,n. 
There exists i,j ≤ n such that T|{i,...,2i} is inf and label 
preserving embeddable into T|{j,...,2j}.  
 
We can add the gap condition to Theorem 8. Also we need to 
investigate 
 
THEOREM 9. Let n >> k ≥ 1, and T = (T,<) be a sufficiently 
large trivalent graph with vertices 1,...,n. There exists k 
≤ i,j ≤ n such that T|{i,...,2i} is homeomorphically 
embeddable into T|{j,...,2j}.  
 
I wrote continuously embeddable above but as we are talking 
about one-one maps, better to use homeomorphically 
embeddable. In addition, presumably there is a version like 
this: 
 
THEOREM 10. Let n >> k ≥ 1, and T = (T,<) be a sufficiently 
large trivalent graph with {1,...,k} labeled vertices 
1,...,n. There exists k ≤ i,j ≤ n such that T|{i,...,2i} is 
homeomorphically embeddable into T|{j,...,2j}.  
 
Is there such a thing as the trivalent graph theorem with k 
labels with a "gap condition"? What exactly does that say 
and how strong is it?  
 
Incidentally, I think the trivalent graph theorem is often 
called the subcubic graph theorem.  
 
 
 
 


