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THE FOUNDATIONAL LIFE 

Kurt Gödel is the great practitioner of the Foundational Life 
who has had such a profound influence on me and so many others. 

In the Foundational Life, there are two principal goals.  

i. The founding of new systematic disciplines that have the 
same general features as the great systematic disciplines 
that have emerged over the centuries - such as mathematics, 
physics, statistics, computing science, electrical 
engineering, etc.

ii. The redevelopment, reorganization, and imaginative 
exposition of existing systematic disciplines in the 
direction of creating deeper relevance to the original 
purposes for which they were founded. 

In the Foundational Life, philosophy is commonly used as a 
method for choosing and analyzing fundamental concepts, and 
mathematics is commonly used for rigorous development. The 
mathematics informs the philosophy and the philosophy informs 
the mathematics. 

In the Foundational Life, there is a delicate balance between 
the philosophical and the mathematical, both subservient to 
the principal focus on i,ii above. 



FOUNDATIONAL LIFE

In the Foundational Life, no premium is paid, per se, to 
careful philosophical statements and arguments, and no 
premium is paid, per se, to complicated or deep mathematical 
developments. However, careful philosophy and deep 
mathematics are used if they facilitate the main focus on 
i,ii - and they often do.

In the Foundational Life, there is constant assessment of 
the prospects for developing new systematic disciplines, or 
redevelopment of existing systematic disciplines. Generally, 
this requires that there be a wide range of deep phenomena 
available for analysis. 

The Foundational Life as I practice it, is both highly 
mathematical and highly philosophical. But it differs 
profoundly from the Mathematical Life and the Philosophical 
Life in various ways. 



PHILOSOPHICAL LIFE

In the Philosophical Life, there is a focus on careful 
analysis of apparently fundamental concepts, and making 
careful arguments that can be defended against attacks, as 
well as attacking other’s careful arguments.

In the Philosophical Life, the choice of these apparently 
fundamental concepts is not generally measured in terms of 
their appropriateness for the creation of new systematic 
disciplines that have the same general features as the great 
systematic disciplines that have emerged over the centuries - 
mathematics, physics, statistics, computing science, etc. 

The clearest exception to the normal modus operandi in the 
Philosophical Life is the emergence of Foundations of 
Mathematics. This involved the analysis of such truly 
fundamental concepts as rigorous proof, natural number, 
deterministic algorithm, etc., and involved such great 
practitioners of the Philosophical Life as Aristotle, Frege, 
Russell, and others. 



MATHEMATICAL LIFE
SCIENTIFIC LIFE

In the Mathematical Life, there is a focus on the rigorous 
development of detailed information within well defined 
frameworks that have emerged for a variety of purposes, often 
from outside mathematics.

These developments take on a life of their own, without 
generally being evaluated in light of the original purposes 
that generated them. Instead, developments are normally 
evaluated in terms of beauty, originality, and complexity. 

The Scientific Life, as normally practiced in academia, 
generally comes in at least two very different forms: 
Experimental Scientific Life and Theoretical Scientific Life. 
Of course, the most profound figures were able to combine 
these two Lives in path breaking ways. 

My understanding of science has not been sufficiently deep 
for my Foundational Life to interact with the Scientific 
Life. I have found too many irresistible opportunities 
present in the Foundational Life related to Mathematics - 
and, to a lesser, limited extent, computer science, 
education, and music. 
 



AN AMBITION

But I do have the ambition of applying the lessons that we can 
learn from the great and profound successes in Foundations of 
Mathematics, to the future Foundations of Science. 

Bringing the Foundations of Physical Science up to anything 
like the level of where Gödel saw the Foundations of Mathe-
matics as a student in Vienna, is going to require a profound 
rethinking of the most elemental aspects of both mathematics 
and science in ways that we can only begin to imagine. 

This is not meant as an insult to physical scientists. 
Foundations of Physical Science appears to be 
transcendentally more difficult than Foundations of 
Mathematics - which has proved difficult enough. 

It took till the early part of the 20th century for the 
Foundations of Mathematics to become the great intellectual 
structure that it is - with mathematical logic being spun off 
as a substantial area of mathematics, now with significant 
applications to other areas of mathematics. 

Yet mathematics has had a very long development, starting in 
antiquity. There was already a vast development of 
mathematics well before Foundations of Mathematics took hold 
in anything like its present form. 



FOUNDATIONS OF MATHEMATICS
FOUNDATIONS OF PHYSICAL SCIENCE

In the Foundational Life, one should expect to experience 
very long gestation periods, with a great deal of trial and 
error. It seems to require multidisciplinary people who think 
very differently than the mainstream, with great imagination, 
power, rigor, and inspiration.   

Among all governmental, academic, and philanthropic 
institutions worldwide, I know of only one that might be 
persuaded to invest carefully and wisely towards 

bringing the Foundations of Physical Science 
up to anything resembling the early levels 

of the Foundations of Mathematics

which will require deep, organized, and intense collaborative 
efforts involving the right kinds of open minded 
mathematicians, logicians, philosophers, computer scientists, 
and physical scientists. 

And that one institution that may be persuadable is the John 
Templeton Foundation.  



FOUNDATIONS OF APPLIED MATHEMATICS

I have heard that the prevailing attitude among physical 
scientists is

shut up and calculate!

The prevailing attitude among mathematicians is, 
correspondingly, 

shut up and prove!

In the case of the Foundations of Mathematics, this wide 
range of deep phenomena consists of mathematical practice - 
both pure and applied. I believe that Foundations of Applied 
Mathematics is grossly underdeveloped, and will play a major 
role in the Foundational Life of the future. 

 



PROFOUND UNEASINESS

A profound uneasiness in mathematics, say around 1800, set 
the stage for the emergence of the Foundations of 
Mathematics. 

There is a profound uneasiness in physical science now, 
which is fully recognized by the "it doesn't seem to make 
any sense; what does it all mean?" crowd, if not recognized 
by the "shut up and calculate!" crowd.

I expect that in the future, we will be able to make 
fruitful connections between these two cases of profound 
uneasiness, which are sufficient to let Foundations of 
Mathematics lead the way by example to breakthrough 
developments in the Foundations of Physical Science. 

To set the stage for the emergence of Foundations of 
Mathematics, consider what mathematics looked like around 
1800. For example, here is a quote taken from M. Kline, 
Mathematical Thought from Ancient to Modern Times, p. 947:

 



PROFOUND UNEASINESS

"By about 1800 the mathematicians began to be concerned 
about the looseness in the concepts and proofs of the vast 
branches of analysis. The very concept of a function was not 
clear; the use of series without regard to convergence and 
divergence had produced paradoxes and disagreements; the 
controversy about the representations of functions by 
trigonometric series had introduced further confusion; and, 
of course, the fundamental notions of derivative and 
integral had never been properly defined. All these 
difficulties finally brought on dissatisfaction with the 
logical status of analysis." 

This profound uneasiness led directly to what is called "the 
installation of rigor in mathematics". 



FIRST MAIN STEP
EPSILON DELTA

The first main step was to make a series of fundamental 
definitions, based on the still unanalyzed number systems, 
taking their basic properties for granted. 

There was gradual emergence and acceptance during the 19th 
century of the fundamental definitions we use today, such as

i. Limit of a sequence of reals.
ii. Sum of an infinite series of reals.
iii. Limit of a real function at a point.
iv. Continuity of real functions. 
v. Derivative of a real function at a point.  
vi. Definite integral of a real function over an interval.

through the so called epsilon/delta methodology.



NUMBER SYSTEMS

Eventually, there was full realization that some of these 
entities may not exist, and that tacit assumptions of 
existence were responsible for a number of paradoxes and 
confusions. For instance 

1 + -1 + 1 + -1 ...

does not exist, avoiding paradoxes emanating from the 
rearrangement of terms. Or that if something like the above 
is to exist, then it must be given an unambiguous 
definition, which must be consistently adhered to.

A new standard of proof emerged, in which such definitions 
were fully incorporated. 

However, it was not until the late 19th century that the 
number systems, and the function concept, were appropriately 
rigorized. For instance, Weierstrass is credited for first 
realizing that to establish the properties of continuous 
functions, one needs a rigorous treatment of the real number 
system.



REAL NUMBER SYSTEM
MULTIPLE DEFINITIONS

Two approaches emerged in the late 19th century for 
rigorously developing the real number system. They both have 
their advantages and disadvantages. One is the Dedekind cut 
definition, and the other is the Cauchy sequence approach. 
The Dedekind cut definition involves sets of rational 
numbers, and the Cauchy sequence definition involves 
sequences of rational numbers. 

In the Dedekind cut approach, real numbers are literally 
certain sets of rationals (left cuts). But the treatment of 
multiplication is unnatural.

In the Cauchy sequence approach, real numbers are literally 
certain sets of sequences of rationals - the equivalence 
classes of Cauchy sequences of rationals under an obvious 
equivalence relation. Addition and multiplication are both 
natural. 

A confusing aspect of the foundations of mathematics is the 
emergence of multiple definitions for the same concept. 
Obviously these multiple definitions cannot be taken 
literally. 



INFINITE UPPER SHIFT KERNEL THEOREM

Good ways of looking at the phenomena of multiple 
definitions had to wait until the 20th century, where 
appropriate notions of mathematical structure and 
isomorphism were developed. 

For example, the real number system is unique up to 
isomorphism as a complete ordered field. 

However, this so called synthetic approach raises additional 
issues: where do these structures come from, and where do 
the isomorphisms between them come from?

In fact, the "right" way to set up the synthetic approach, 
systematically, is still a topic of controversy and research 
to this day.

Coming back to the development of the real number system 
through Dedekind cuts and Cauchy sequences, notice how it 
relies on the "more elementary" rational number system.  



RATIONALS AND INTEGERS

Rationals are normally defined as either ordered pairs of 
integers in reduced form, or equivalence classes of ordered 
pairs of integers. Synthetically, rationals form the unique 
ordered field with no proper subfield, under isomorphism. 

The integers, in turn, are defined as either ordered pairs of 
natural numbers in reduced form, or signed natural numbers, 
or equivalence classes of pairs of natural numbers. 

Synthetically, the integers form the unique commutative 
ordered ring with no proper subring, under isomorphism. 

The definition of the natural numbers creates additional 
issues. There is a synthetic definition due to Peano. But, 
ultimately, synthetic definitions need a foundation.   

Although at this stage, the foundations of mathematics was 
greatly clarified from the chaos and confusion of 1800, a 
major new simplifying idea was needed in order to create the 
sought after ultimate foundations.  



GRAND UNIFICATION

The grand unifying idea for foundations of mathematics 
has proved to be the set concept. 

The truly unifying set concept is not the ordinary one 
- sets of "atomic" objects. It is a more sophisticated 
one where the elements of sets are not restricted, and 
may be themselves sets. 

Set theory was intensively developed as a branch of 
mathematics by Georg Cantor starting in the late 19th 
century. 

In pure set theory, all objects are sets. The only 
concept is that of membership. 

Equality can be treated in one of two ways, that are 
essentially equivalent. i) below has been adopted.

i. We can take equality as a primitive concept, as we 
can do in all contexts. We assert that if two sets 
have the same elements, then they are equal. 

ii. We can avoid using equality at all. We assert that 
if two sets have the same elements, then they are 
elements of the same sets.



PURE SET THEORY
IMMUTABLE OBJECTS

Pure set theory constitutes a very bold grand unification. 
Yet it works very well, and has stood the test of time. It is 
based on objects that are unchanging, with completely 
objective properties. No time, and no observer!

This immutability is very striking. Consider the familiar 
case of a moving point, which might model a thrown 
projectile. Instead of working directly with a single point 
that is changing its position (a changing property of the 
point), we instead work with a single object that is 
unchanging. This single object is much more complicated than 
a mere point. This single object is of course a function from 
an interval in the reals (the relevant time interval) into 
reals (the position). 

This move from changing points to fixed immutable objects 
appears as a crucial step towards rigor. The resulting 
function is analyzed in terms of limits, derivatives, 
integrals, local/absolute extrema, etc.



EXPLODING UNIVERSE

Yet this move, and perhaps other related moves, may 
represent the basis for a disconnect between physical 
science and mathematics. Perhaps, now that we have such deep 
understanding of the foundations of mathematics, we should 
experiment with enriching set theory thru the direct 
incorporation of changing objects. Even more radical would 
be to introduce the observer into set theory. 

There are indications of what can be gained by incorporating 
even a very limited form of changing objects into 
mathematics. I considered what I called the exploding set 
theoretic universe. There are two set theoretic universes. 
One now, and one later, which is formed upon an explosion. 
Principles relating the two universes are proposed. This 
situation supports the construction of models of set theory 
in which so called "large cardinal hypotheses" hold. 

I expect that "the evolving universe" - i.e., "the evolving 
set theoretic universe", or "the evolving mathematical 
universe", will become a major topic in future Foundational 
Life.



ASSERTIONS AND PROOFS

With the establishment of the interpretation of mathematics 
in set theory, the current foundations of mathematics took 
shape. However, there is a crucial missing element. This is 
logical structure.    

The appropriate logical structure for Foundations of 
Mathematics is given by what is now called first order 
predicate calculus (with equality). This calculus is 
generally credited to Gottlob Frege from the late 19th 
century. 

Logical structure, at least ideally, applies to all deductive 
reasoning, regardless of whether it is confined to 
mathematics. 

However, in practice, there is a utter lack of substantial 
examples of deductive reasoning with anything like the depth 
and complexity of deductive reasoning in mathematics. 

Instead, outside mathematics, we almost entirely rely on 
instincts and common sense. This is true, generally speaking, 
even in the realm of science. 



LOGICAL STRUCTURE

Consider all of the reasoning that goes into the design of 
delicate and complex experiments, which are to confirm or 
refute theories. There is a vast array of hidden assumptions, 
most of which resist clear formulation.  

I expect that the logical analysis of scientific 
experimentation will become a major component in the 
Foundational Life of the future.

Returning to logical structure within mathematics, we first 
need the notion of an assertion. For this, we use 

variables ranging over sets
membership and equality (∈,=)
connectives (not, and, or, if then, if and only if)
quantifiers (for all, there exists)

We then have the so called axioms and rules of inference for 
logic. These are to apply to any situation - they don't depend 
on what sets are, or what membership means. They do depend on 
the meaning of =.  



PROOF ASSISTANTS

Firstly, an elaborate system of abbreviations and conventions 
have developed in order to support the construction of actual 
mathematical assertions. 

Secondly, mathematicians generally require a massive infusion 
of additional axioms and rules of inference of logic, which 
are not theoretically new (by Gödel's Completeness Theorem no 
appropriate new ones exist), but which are needed in the 
practical sense. 

Thirdly, it is just too burdensome for a human to take care 
of every detail in a non straightforward argument.

All of this leads to the obvious question of whether formally 
correct proofs actually have been constructed - or even can be 
actually constructed - for substantial mathematical theorems. 

The answer is yes, but with the help of a computer. The 
biggest inventory of actual formally correct proofs emanates 
from the proof assistant called Mizar. There are rivals; 
e.g., Isabelle, Coq, HOL, etc.

Systems like Mizar keep track of and help supply details. 
However, at present, they are very limited and primitive. 



UNDERSTANDING TRIVIALITIES

What is badly needed is a better understanding of "trivial 
inferences", where the computer supplies the trivial 
inferences, and the human supplies the nontrivial inferences. 
One also needs a much richer supply of humanly created 
algorithms for fragments of mathematics that can be applied 
automatically and effectively by the computer. 

I expect that the development of algorithms for fragments of 
mathematics, and an understanding of trivialities, will be a 
major part of the future of the foundations of mathematics, 
where the creation of formally correct proofs will be greatly 
facilitated and expanded. 

I further expect that this expansion of the inventory of 
formally correct proofs will lead to a new level of 
understanding of the structure of actual mathematical proofs.  

So now we have that gold standard of mathematical proof - the 
ZFC axiom system. But experience has shown that ZFC is vast 
overkill for the vast preponderance of mathematics. 

This led me to the development of so called Reverse 
Mathematics, which robustly classifies mathematical theorems 
according to the logical principles needed for their proof. 



STRICT REVERSE MATHEMATICS

This classification is supported by the fact that so many 
mathematical theorems are demonstrably equivalent to 
logical principles far weaker than ZFC. In Reverse 
Mathematics, logical principles are proved from 
mathematical theorems - hence the name Reverse Mathematics. 

I introduced the base theory, RCA0, for Reverse Mathema-
tics, over which the "reversals" are made. I set up the 
field in the late 1960s to mid 1970s based on RCA0. 

Ideally there should be no base theory - or any base 
theory should consist solely of mathematical assertions 
that are explicitly essential in all of mathematics. 
E.g., the discrete order ring axioms for the integers. 

I already envisioned, and wrote about this kind of Strict 
Reverse Mathematics, before I set up Reverse Mathematics 
with RCA0. I chose the present setup because of its 
special clarity and problem generating power. In fact, it 
is now clear that Strict Reverse Mathematics would have 
been premature at that time.

I expect that the further development of Strict Reverse 
Mathematics that I have begun recently will be a major 
part of the future of the Foundations of Mathematics. 



FUNDAMENTAL FOUNDATIONAL MOVES: 
consistency, completeness, incompleteness

The issues of consistency, completeness, and incompleteness 
have framed the major developments in the Foundations of 
Mathematics since the time of Kurt Gödel. 

A formal system is consistent if and only if it does not 
prove a contradiction. 

The idea is that if a system is inconsistent, then it is 
worthless because it can prove all statements - and therefore 
makes no contribution to separating the true from the false. 

The idea has been floated that if we remove the logical 
inference that 

from a contradiction, we can derive any statement

called explosion, then an inconsistent system might still 
have some value in that it may not prove all statements. 



INCONSISTENT SYSTEMS USEFUL?

At present, this intriguing proposal lacks sufficient 
justification. For instance, in http://
en.wikipedia.org/wiki/Paraconsistent_logic#Tradeoff it 
is reported that the rejection of explosion entails 
the rejection of at least one of three principles, 
each one of which is definitely used in actual 
mathematics. 

A counter might be to argue that mathematics can be 
appropriately developed without, for example: from A 
and ¬A ∨ B, derive B. However, this has not been 
established. 

There is a much clearer way in which an inconsistent 
system can be of value. That is, where all proofs of a 
contradiction are of ridiculously enormous size. 
Unfortunately, this does not represent any kind of 
solution to paradoxes such as the Russell paradox or 
the Burali-Forti paradox, since they involve only 
proofs of small size.  

http://en.wikipedia.org/wiki/Paraconsistent_logic#Tradeoff
http://en.wikipedia.org/wiki/Paraconsistent_logic#Tradeoff
http://en.wikipedia.org/wiki/Paraconsistent_logic#Tradeoff
http://en.wikipedia.org/wiki/Paraconsistent_logic#Tradeoff


GÖDEL’S SECOND INCOMPLETENESS THEOREM

Gödel's second incompleteness theorem, formulated in modern 
terms, establishes that 

Con(ZFC) cannot be proved in ZFC, 
unless ZFC is in fact inconsistent

where Con(T) is "T is consistent". One version of Hilbert's 
program is to establish Con(ZFC) within PA = Peano 
Arithmetic, or even a weak fragment T of PA, where Hilbert 
regarded Con(T) as indisputable. But then from Gödel's second 
incompleteness theorem, we have 

Con(ZFC) cannot be proved in T.

We now review four great Completeness Theorems, due to Gödel, 
Presburger, and Tarski. 



FOUR COMPLETENESS THEOREMS

COMPLETENESS THEOREM 1. (Gödel 1929). A sentence in predicate 
calculus is true in all structures if and only if it is 
provable from the usual axioms and rules of inference of logic.

The above theorem establishes that the usual axioms and rules 
of inference of logic = LOGIC, are not subject to any 
expansion that is compatible with its intended purpose. 

COMPLETENESS THEOREM 2. (Presburger 1929). A sentence about 
the ordered group of integers is true if and only if it is 
provable from the axioms for discrete ordered groups, and the 
quotient remainder axioms, combined with LOGIC. 

COMPLETENESS THEOREM 3. (Tarski 1951). A sentence about the 
ordered field of real numbers is true if and only if it is 
provable from the axioms for ordered real closed fields 
combined with LOGIC.

COMPLETENESS THEOREM 4. (Tarski 1951). A sentence about the 
field of complex numbers is true if and only if it is 
provable from the axioms for algebraically closed fields of 
characteristic zero combined with LOGIC. 



GÖDEL’S FIRST INCOMPLETENESS THEOREM

We now turn to Gödel's first incompleteness theorem. 

INCOMPLETENESS THEOREM 1. (Gödel 31). Let T be a consistent 
extension of a weak fragment of Peano Arithmetic known as 
Raphael Robinson's Q. Assume that the axioms of T consist of 
finitely many axioms and axiom schemes. There is a sentence 
that is neither provable nor refutable in T. 

We can obtain the following as a Corollary.

INCOMPLETENESS THEOREM 2. (Gödel 31). There is no finite set 
of axioms and axiom schemes which, when combined with the 
usual axioms and rules of inference of logic, proves exactly 
the true sentences about the ring of integers. 

INCOMPLETENESS THEOREM 3. (Julia Robinson 49). There is no 
finite set of axioms and axiom schemes which, when combined 
with the usual axioms and rules of inference of logic, 
proves exactly the true sentences about the field of 
rationals. 



FIRST MATHEMATICALLY NATURAL 
INCOMPLETENESS

The first example of a mathematically natural assertion that 
is neither provable nor refutable in ZFC is as follows. 

INCOMPLETENESS THEOREM 4. (Gödel 31, Cohen 63,64). The 
sentence "every infinite set of reals is in one-one 
correspondence with the integers or the real numbers" is 
neither provable nor refutable in ZFC, unless ZFC is 
inconsistent. 



CONSISTENCY, AND THE
INCORPORATION OF NEW NOTIONS

I am expecting that some natural condition on proofs in ZFC 
will be discovered, where

i. It is shown that all proofs before 2011 in the published 
mathematical literature are proofs in ZFC obeying the 
natural condition.
ii. It is provable in ZFC, or even in PA, that there is no 
proof of a contradiction in ZFC obeying the natural 
condition. 

I expect that the proof in ZFC or in PA in ii) would not 
obey the natural condition. In fact, this is probably a 
general result assuming that the natural condition itself 
obeys some natural conditions. 

Many years ago, I discovered a finite form of Gödel's second 
incompleteness theorem, which has subsequently been refined 
by Pavel Pudlak. It asserts, roughly speaking, that

Any proof in PA that there is
no short inconsistency proof in ZFC,

must be long,
unless ZFC in fact has a short inconsistency proof.



CONCEPT CALCULUS

However, the results thus far do not bear directly on actual 
mathematical practice, since the results are asymptotic. It 
would appear that when the asymptotics are removed, the 
numbers reflect large overhead, weakening the practical 
import of the results. There is also the issue of realistic 
proof systems that adequately reflect mathematical practice. 
Finally, there are issues related to the P = NP problem that 
will limit the strength of the results, at least until 
(finite forms of) P = NP is resolved. 

I have been developing Concept Calculus, in which basic 
common sense concepts from outside science are logically 
analyzed and given plausible axiomatizations. I then show 
that these resulting axiomatizations are mutually 
interpretable with various set theories, including ZFC and 
ZFC extended by the so called large cardinal hypotheses. 

As a Corollary, this provides consistency proofs of ZFC 
using the consistency of such axiomatizations. If these 
axiomatizations are suitably augmented with nonproblematic 
principles involving the natural numbers, then these 
axiomatizations become sufficient to state and prove Con
(ZFC).



COMPLETENESS, AND DELICATE CHOICE OF 
FRAGMENTS

I expect Concept Calculus to become a major part of the 
Foundational Life, forging unexpected new links between 
mathematics and philosophy. 

The complete axiomatizations of the ordered group of 
integers, the ordered real closed field of reals, and the 
field of complex numbers of characteristic zero, were proved 
by the method of quantifier elimination. 

This is a fundamental technique used by model theorists in 
many contexts. Furthermore, they do not emphasize 
completeness, but rather the properties of the definable 
sets in such structures.  

In particular, they have formulated a fundamental property 
of linearly ordered structures known as 0-minimality. This 
asserts that every definable subset of the domain is a 
finite union of intervals with endpoints in the domain 
(infinite endpoints are allowed). 

A surprising array of properties involving the higher 
dimensional definable sets follow by very interesting 
arguments just from 0-minimality. 



0-MINIMALITY

Yet completeness is not a consequence of 0-minimality 
even in the fundamental case of the ordered field of 
real numbers with exponentiation added - which is 
known to be 0-minimal (Wilkie 1996). Unfortunately, 
even deciding the equalities between exponential 
constants constitutes hopelessly difficult number 
theory at the present time. 

However, there is a famous number theoretic conjecture 
called Schanuel's Conjecture. It is way out of reach 
at the present time, and it is very powerful.

COMPLETENESS 5. (MacIntyre, Wilkie 1996). Every 
sentence about the ordered field of reals together 
with the exponential function, is provable or 
refutable in ZFC + Schanuel's Conjecture. In fact, ZFC 
can be replaced by an explicitly given natural set of 
axioms. 

I expect that a number of developments in completeness 
will play a substantial role in the Foundations of 
Mathematics in the future. These include the 
following.



0-MINIMALITY

i. An understanding of when the expansion of the ordered field 
of real numbers by a real power series is 0-minimal, in terms 
of basic properties of the power series. 

ii. An understanding of the scope of 0-minimal expansions of 
the ordered field of reals, including the issue of the 
possible growth rates at infinity.  

iii. A finite form for 0-minimality, revealing its underlying 
finite combinatorial content. 

iv. The systematic development of completeness theorems 
throughout mathematics, without requiring 0-minimlaity. 
Various fruitful weakenings of 0-minimality have been 
fruitfully explored (C. Miller). These still involve 
considering all definable subsets of the domain. I expect 
various imaginative restrictions on the sentences considered 
in various context to emerge, that support new kinds of 
completeness theorems.



INCOMPLETENESS, AND CONCRETENESS, 
SIMPLICITY, NATURALNESS

Concrete Mathematical Incompleteness is discussed at great 
length in the Introduction to my book Boolean Relation Theory 
and Incompleteness, available on my website. 

Is there a mathematically natural concrete mathematical 
statement which cannot be proved or refuted in ZFC?

This is the basic issue in Concrete Mathematical 
Incompleteness that is so crucial for the future of the 
Incompleteness Phenomenon, and for Foundations of Mathematics 
generally.  

Here is the state of the art. Below, all intervals are 
intervals in the rationals. 



MAXIMAL CLIQUE EMBEDDING
In work generously supported by the John Templeton Foundation:

MAXIMAL CLIQUE EMBEDDING THEOREM. Every order invariant 
graph on [0,1]k has a maximal clique with a nontrivial 
embedding whose range and fixed points each form an 
interval. 

EXPLICIT MAXIMAL CLIQUE EMBEDDING THEOREM. Every order 
invariant graph on ([-1,1]\{0})k has a maximal clique with 
the embedding min(q,q/2), q ∈ [-1,1]\{0}. 

These are neither provable nor refutable in ZFC. They are 
equivalent to the consistency of Mahlo cardinals of finite 
order. 

I expect that the examples will permeate the whole of 
mathematics, and some of them will be explicitly finite. 

I expect there to emerge a theory of mathematical 
naturalness, spearheaded by the construction of languages 
based on exceedingly common mathematical notions. 
Mathematical Naturalness will then be successfully modeled 
in terms of the simplicity of assertions within such 
languages. 


