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It’s great to be back here!

I was a math student 1964-67, and remember taking courses here in 
2-190, and in 2-290! 

I started as a Freshman and finished with a Ph.D. MIT decided to get 
rid of me early!

I don’t remember if I got as high as 2-390, but I distinctly remember 
taking my first logic course - as a Freshman - with Hartley Rogers, 
in Fall 1964 - here in 2-190. Or was it in 2-290?

The textbook was Elliot Mendelson’s, Introduction to Mathematical 
Logic, still a good textbook today. 

I knew that logic was supposed to be the basis of all thinking (maybe 
a bit naive considering, e.g., the political world).

I remember asking Hilary Putnam - then a Professor in the Philosophy 
Department here - “how does logic begin?” Our meeting was outside 
Walker Memorial Cafeteria. I’m still pondering that one. 

And I remember talking about recursion theory inside my thesis 
advisor’s fancy new sports car. The proud owner was Gerald Sacks, 
then at MIT.



What This Is About:
The Search

When I was a student way back in 1964, I was fascinated by the drama 
created by the great legendary figure Kurt Gödel (died 1978):

there are mathematical statements that cannot be proved or refuted 
using the usual axioms and rules of inference of mathematics. 

Furthermore, Gödel showed that this cannot be repaired, in the 
following sense:

even if we add finitely many new axioms to the usual axioms and rules 
of inference of mathematics, there will remain mathematical 
statements that cannot be proved or refuted. 

These startling results are taught in the usual mathematical logic 
curriculum. One common way of proving these results provides no 
examples. 

So what about the examples? I.e., examples of such INCOMPLETENESS?



STANDARD EXAMPLES OF INCOMPLETENESS

1. That “the usual axioms and rules of inference for mathematics does 
not lead to a contradiction”.  
 I.e., “ZFC does not have a contradiction” is neither provable nor 
refutable in ZFC. 

2. That “every infinite set of real numbers is either in one-one 
correspondence with the integers or in one-one correspondence with 
the real line”. 
 I.e., “the continuum hypothesis of Cantor” is neither provable nor 
refutable in ZFC.
 
These and related examples appear in the mathematical logic 
curriculum. 

Note that these examples are very much associated with abstract set 
theory, and unusually far removed in spirit and content from 
traditional down to earth mathematics. 

I was very aware of this disparity, even as a student, which was 
reinforced in conversations with other students and Professors. 

For several decades I have been seeking examples of a new “down to 
earth” kind. This has been an ongoing process. Recently, there has 
been some particularly clear progress. I will highlight the main 
events up through now.  



WHAT IS AN UNPROVABLE THEOREM?

The title of the talk mentions “Unprovable Theorems”. 

These are a particularly important kind of statement 
neither provable nor refutable in ZFC (the usual axioms 
and rules of inference of mathematics). 

An Unprovable Theorem is a theorem that is 

i. proved using a by now well studied hierarchy of 
additional axioms for mathematics called the “large 
cardinal hierarchy”.

ii. cannot be proved (or refuted) with only the usual 
axioms for mathematics. 

The highlight of this talk is the presentation of some 
examples of Unprovable Theorems of a radically new kind. 

They will take the form of Fixed Point Theorems in a 
discrete setting. We will also present elegant finite 
approximations.



DOES THIS TALK HAVE ANYTHING TO DO 
WITH THE AXIOM OF CHOICE?

Many mathematicians think that if somebody is talking 
about Unprovability, they are talking about an axiom of 
choice (AxC) issue. 

This talk has nothing to do with AxC for the following 
interesting reason.

THEOREM (Gödel). If a reasonably concrete sentence can 
be proved using the AxC, then it can also be proved 
without using the AxC. 

Since we are talking exclusively about reasonably - and 
often very - concrete sentences, the axiom of choice is 
entirely irrelevant. 

In any case, we will always assume that the axiom of 
choice is available to be used. 

This talk has everything to do with how big a dose of 
infinite thinking that we need to use. 



HOW DO PREVIOUS UNPROVABLE THEOREMS 
DIFFER FROM NORMAL MATHEMATICS? 

I have addressed this question earlier. I want to repeat 
what I said in more specific terms.

Previous examples of Unprovable Theorems have one or 
more of the following features. 

1. They are about formal systems for doing mathematics. 
If reformulated in terms of usual mathematical objects, 
they become hopelessly artificial. 

2. They involve uncountable objects of a pathological 
nature. If the Unprovable Theorem is specialized to 
objects of limited pathological nature, then it becomes 
a Theorem of ZFC. 

For more than 40 years, I have been developing examples 
of Unprovable Theorems which do not have these features. 

The ongoing research has been driven by the issue of the 
quality of the examples. 



WHAT FEATURES DRIVE THE QUEST FOR NEW 
UNPROVABLE THEOREMS?

We seek the following features. 

1. The Unprovable Theorem should involve only objects of 
the most concrete and familiar kind from normal 
mathematics.

2. The Unprovable Theorem should be simple to state, and 
be free of ad hoc features - as is characteristic of 
good normal mathematics. 

3. The Unprovable Theorem should have an intrinsic 
interest on its own, or part of a clearly stated and 
well motivated systematic investigation. 

The examples we present today represent a substantial 
breakthrough with regard to these criteria over what we 
were able to do even earlier in 2009.

They now take the form of Fixed Point Theorems in a 
discrete setting.  



WHAT IS THE FUTURE OF THIS SEARCH FOR 
UNPROVABLE THEOREMS?

1. To uncover the most basic and fundamental 
combinatorial structures that are behind these new 
Unprovable Fixed Point Theorems.

2. To realize these combinatorial structures naturally 
in a variety of well studied contexts in algebra, 
geometry, and analysis. 

3. To obtain Unprovable Theorems that fit well into 
standard algebra, geometry, and analysis. 

4. To craft the demonstrably necessary tools from beyond 
ZFC for general use throughout normal mathematics. 

If we don’t do this, our successors will. 



WHAT ARE SOME EARLIER EXAMPLES OF 
WEAKLY UNPROVABLE THEOREMS?

Over the years, we have developed a number of Weakly 
Unprovable Theorems, in this sense:

Although the Theorems can be proved in ZFC, they use 
portions of ZFC that are unexpectedly large compared to 
their statements. 



LONG FINITE SEQUENCES FROM A FINITE 
ALPHABET

Is there a longest finite sequence x1,...,xn from {1,2} 
such that a certain pattern is avoided?

PATTERN TO BE AVOIDED. xi,...,x2i is a subsequence of 
xj,...,x2j, where i < j ≤ n/2. 

E.g., (2,1,2) is a subsequence of (1,2,2,2,1,1,1,2). 

ANSWER: Yes. n = 11. Gifted high school students in Paul 
Sally’s summer program can sometimes prove this. 

Is there a longest finite sequence x1,...,xn from {1,2,3} 
such that this pattern is avoided?

ANSWER: Yes. I gave a lower bound for n in 

Long Finite Sequences, Journal of Combinatorial Theory, 
Series A 95, 102-144 (2001).

n(3) > A7198(158386)

where Ap is the p-th Ackermann function from Z+ to Z+.



WHAT IS THE ACKERMANN HIERARCHY OF 
FUNCTIONS?

There are many versions that differ slightly. Most 
convenient: functions A1,A2,... from Z+ to Z+ such that 
i. A1(n) = 2n.
ii. Ai+1(n) = AiAi...Ai(1), where there are n Ai’s. 

We make some derivations. 

Ak(1) = 2. Ak(2) = 4. 

A2(n) = 2n. A3(n) is an exponential stack of n 2’s.

A3(3) = A2A2A2(1) = A2(4) = 16. A3(4) = A2(A3(3)) = A2(16) 
= 216 = 65,536. 

A4(3) = A3A3A3(1) = A3(4) = 216 = 65,536. 

A4(4) = A3A4(3) = A3(65,536), which is an exponential 
stack of 2’s of height 65,536.

A5(5) = hard to “see”.

Recall n(3) > A7198(158386).



LONG FINITE SEQUENCES FROM A FINITE 
ALPHABET

Is there a longest sequence x1,...,xn from {1,...,k} 
avoiding this pattern?

ANSWER: Yes, for any k ≥ 1. However n(k), as a function 
of k, grows faster than all multiply recursive 
functions. The Ackermann function is a 2-recursive 
function. 

This Theorem can be proved using just Induction (Peano 
Arithmetic).

It can be proved in 3 quantifier induction but not in 2 
quantifier induction. This is an example of a Weakly 
Unprovable Theorem. See

Long Finite Sequences, Journal of Combinatorial Theory, 
Series A 95, 102-144 (2001).

Also: n(4) > AA...A(1), where there are A5(5) A’s. 

A(n) = An(n).



COUNTABLE SETS OF REALS AND RATIONALS

After you teach pointwise continuity of functions from a 
set of reals into the reals, you can state the following 
theorem. 

COMPARABILITY THEOREM. If A,B are countable sets of real 
numbers, then there is a one-one pointwise continuous 
function from A into B, or a one-one pointwise 
continuous function from B into A. 

This was well known from the early 20th century if A,B 
are countable and closed. 

Despite the elementary statement, my proof uses 
transfinite induction on all countable ordinals. I 
proved that this is required. See

Metamathematics of comparability, in: Reverse 
Mathematics, ed. S. Simpson, Lecture Notes in Logic, 
vol. 21, ASL, 201-218, 2005. 

Transfinite induction on all countable ordinals is 
required even if for just sets of rationals A,B.



HOW DO WE SAY MATHEMATICALLY THAT 
TRANSFINITE INDUCTION ON ALL 

COUNTABLE ORDINALS IS REQUIRED?

There are good proof theoretic ways of saying this, but 
here is a mathematical way. Experience shows that if we 
have a Theorem of the form 

*) (∀x ∈ X)(∃y ∈ X)(R(x,y)) 

where X is a complete separable metric space and R is a 
Borel relation, and if the proof is “normal”, then there 
is a Borel function H:X → X such that 

**) (∀x ∈ X)(R(x,H(x)).

A huge number of Theorems of analysis can be put in form 
*), where **) holds for some Borel H. 

The Comparability Theorem can be put in form *), via 
infinite sequences of reals (R∞). Yet there is no Borel 
H with **). 



f(x1,...,xk) ≤ f(x2,...,xk+1)

THEOREM A. For all k,r ≥ 1 and f:Nk → Nr, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤ 
f(x2,...,xk+1) coordinatewise.

THEOREM B. For all k ≥ 1 and f:Nk → N, there exist 
distinct x1,...,xk+2 such that f(x1,...,xk) ≤ 
f(x2,...,xk+1) ≤ f(x3,...,xk+2).

THEOREM C. For all k ≥ 1 and f:Nk → N, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1)-
f(x1,...,xk) ∈ 2N. 

For f given by an algorithm, A,B,C are statements in 
the language of Peano Arithmetic (PA). 

We have shown that A,B,C cannot be proved in PA for 
(even very efficiently) computable functions f. For 
any fixed k, the can be proved in PA for computable f.  



HOMEOMORPHIC EMBEDDINGS BETWEEN 
FINITE TREES

We use finite rooted trees. Each forms a topological 
space, with a notion of homeomorphic embedding between 
them. For our purposes, this is almost the same as an 
inf preserving one-one map from vertices into vertices. 

J.B. KRUSKAL. In any infinite sequence of finite trees, 
one is homeomorphically embeddable in a later one.

Kruskal’s proof and all subsequent proofs use 
uncountable sets. in particular, an infinite sequence of 
finite trees is constructed with reference to all such. 

We proved that this is necessary. In fact, necessary 
even for very computable infinite sequences. See

Internal finite tree embeddings, in: Lecture Notes in 
Logic, volume 15, 62-93, 2002, ASL.

There are stronger results related to the Graph Minor 
Theorem of Robertson and Seymour. See

(with N. Robertson and P. Seymour), The Metamathematics 
of the Graph Minor Theorem, AMS Contemporary Mathematics 
Series, vol. 65, 1987, 229-261. 



BOREL SETS IN THE PLANE AND ONE 
DIMENSIONAL BOREL FUNCTIONS

In any topological space, the Borel sets form the least 
σ algebra of sets containing the open sets. For 
uncountable Polish spaces (complete separable metric 
spaces), this leads to a hierarchy of Borel sets of 
length ω1. However, most delicate issues arise at the 
finite levels, or even at the third level. 

THEOREM. (Using a result of D.A. Martin from Infinitely 
Long Game Theory). Every Borel set in ℜ2, symmetric about 
the line y = x, contains or is disjoint from the graph 
of a Borel function from ℜ into ℜ.

We proved that it is necessary and sufficient to use 
uncountably many iterations of the power set operation. 
For finite level Borel sets in ℜ2, it is necessary and 
sufficient to use infinitely many iterations of the 
power set operation. See

On the Necessary Use of Abstract Set Theory, Advances in 
Math., Vol. 41, No. 3, September 1981, pp. 209-280.



BOOLEAN RELATION THEORY

Boolean Relation Theory concerns Boolean relations 
between sets and their images under functions. This 
leads to Unprovable Theorems. There is a book draft on 
my website - Boolean Relation Theory and Incompleteness. 

The two starting points of BRT are the ZFC theorems

THIN SET THEOREM. For all f:Nk → N, there exists 
infinite A ⊆ N such that f[Ak] ≠ N.

COMPLEMENTATION THEOREM. For all strictly dominating 
f:Nk → N, there is a unique A ⊆ N such that A ∪. f[Ak] = 
N.

Strictly dominating means f(x1,...,xk) > x1,...,xk. Also 
∪. is disjoint union.
 We restate as a Fixed Point Theorem:

COMPLEMENTATION THEOREM. For all strictly dominating 
f:Nk → N, there is a unique A ⊆ N such that A = N\f[Ak].

There are some mildly exotic features of proofs, more so 
with the Thin Set Theorem. 



BOOLEAN RELATION THEORY
Let ELG be the set of all f:Nk → N, k ≥ 1, where there 
exist c,d > 1 such that 

cmax(x) ≤ f(x) ≤ dmax(d)

holds for all but finitely many x ∈ Nk.

TEMPLATE. For all f,g in ELG, there exists infinite 
A,B,C ⊆ N such that 

X ∪. fY ⊆ V ∪. gW
 P ∪. fQ ⊆ R ∪. gS.

where the letters X,Y,V,W,P,Q,R,S are among the letters 
A,B,C. fE is f[Ek], where dom(f) = Nk, and ∪. means 
“disjoint union”. 

There are 38 = 6561 instances of the Template. All but 
12 are provable/refutable in a very weak fragment of 
ZFC. The 12 are provable using strongly Mahlo cardinals 
of finite order, but not in ZFC.

A ∪. fA ⊆ C ∪. gB
 A ∪. fB ⊆ C ∪. gC.



STRICTLY DOMINATING ORDER INVARIANT 
RELATIONS

SDOI(Qk) forms the class of binary relations on Qk that 
we use for the Unprovable Fixed Point Theorem.

These are rather concrete - there are only finitely many 
such R ⊆ Qk × Qk = Q2k.

OI(Qk) is the class of order invariant R ⊆ Qk × Qk = Q2k. 
I.e., membership in R (as a 2k tuple) depends only on 
the relative order of the coordinates. 

SD(Qk) is the class of strictly dominating R ⊆ Qk × Qk. 
I.e., where R(x,y) → max(x) < max(y). 

SDOI(Qk) = OI(Qk) ∩ SD(Qk).

The R ∈ OI(Qk) have nice canonical presentations as a 
finite set of 2k tuples from {1,...,2k} whose set of 
coordinates forms an initial segment of 1,...,2k. 

The R ∈ SDOI(Qk) have canonical presentations meeting the 
obvious requirement. 



EASY FIXED POINT THEOREM

Let cube(A) be the least Vk containing A.

TRIVIAL FIXED POINT THEOREM. For all R ∈ SDOI(Qk), some A 
= cube(A)\R[A]. (Set A = ∅).

For A ⊆ Qk, X ⊆ Q, let cube(A,0) be the least Vk such  
that A ⊆ Vk ∧ 0 ∈ V.

BABY FIXED POINT THEOREM. For all R ∈ SDOI(Qk), some A = 
cube(A,0)\R[A]. (Set A = {(0,...,0)}).

EASY FIXED POINT THEOREM. For all R ∈ SDOI(Qk), some A = 
cube(A,0,1,...)\R[A]. (Arrange A = {0,1,...}k\R[A]).

Let R ∈ SD(Qk). Define A by induction. Suppose membership 
has been decided for all x with max(x) < n, n ≥ 0. Let 
max(x) = n. Put x in A if and only if x ∉ R[A∩(-∞,n)k]. 
Then for all x ∈ Nk, x ∈ A iff x ∉ R[A], as required. For 
A = Nk\R[A], A is unique.

WELL ORDERED FIXED POINT THEOREM. Let X ⊆ Q be well 
ordered. For all R ∈ SDOI(Qk), some A = cube(A,X)\R[A]. 
(Arrange A = Bk\R[A]).



THE UNPROVABLE UPPER SHIFT FIXED 
POINT THEOREM

The upper shift of x ∈ Qk is obtained by adding 1 to all 
nonnegative coordinates of x. 

The upper shift of A ⊆ Qk is the set of upper shifts of 
elements of A.

UPPER SHIFT FIXED POINT THEOREM. For all R ∈ SDOI(Qk), 
some A = cube(A,0)\R[A] contains its upper shift. 

This is an Unprovable Theorem.

THEOREM. There exists R ∈ SDOI(Qk) such that there is no 
A = Qk\R[A].  



FINITE APPROXIMATIONS

For all R ∈ SDOI(Qk), there exist finite A1,A2,... ⊆ Qk 
such that for all i ≥ 1, Ai+1 = cube(Ai+1,0)\R[Ai+2] 
contains Ai ∪ us(Ai).

For all R ∈ SDOI(Qk), there exist finite A1,...,Ak ⊆ Qk 
such that for all 1 ≤ i ≤ k-2, Ai+1 = cube(Ai+1,0)\R[Ai+2] 
contains Ai ∪ us(Ai).

For all R ∈ SDOI(Qk), there exist finite A1,...,Ak ⊆ Qk 
such that for all 1 ≤ i ≤ k-2, Ai+1 = cube(Ai+1,0)\R[Ai+2] 
contains Ai ∪ us(Ai), where the numerators and 
denominators of the rationals used in the A’s have 
magnitudes at most (8k)!.

It is provable in a weak fragment of ZFC that these 
sequential forms are equivalent to the original form. 

Look how concrete the third formulation is. It is in 
what is called Π01 form.



WHAT ARE THE LARGE CARDINALS USED FOR 
BOOLEAN RELATION THEORY AND FOR THE 
UPPER SHIFT FIXED POINT THEOREM? 
strongly inaccessible cardinals

not enough!
An (von Neumann) ordinal is the set of its predecessors, 
and a (von Neumann) cardinal is an ordinal not 
equinumerous with any predecessor.
 We later give a purely order theoretic treatment of 
those used for the Upper Shift Fixed Point Theorem. 

κ is a strong limit cardinal iff for all α < κ, 

card(℘(α)) < κ. 

κ is a regular cardinal iff κ is not the sup of a subset 
of κ of cardinality < κ. 

κ is an inaccessible cardinal iff κ is a regular strong 
limit cardinal > ω.

ZFC does not suffice to prove the existence of a 
strongly inaccessible cardinal.

Grothendieck Topoi (strong kind).



WHAT ARE THE LARGE CARDINALS USED FOR 
BOOLEAN RELATION THEORY? 

strongly k-Mahlo cardinals

κ is a strongly 0-Mahlo cardinal iff κ is a strongly 
inaccessible cardinal.

κ is a strongly n+1-Mahlo cardinal iff κ is a strongly 
n-Mahlo cardinal such that every closed and unbounded 
subset of κ has an element that is a strongly n-Mahlo 
cardinal.

The 12 exotic cases in Boolean Relation Theory are 
provable in 

SMAH+ = ZFC + “for all k there exists a strongly k-Mahlo 
cardinal”, 

but not in any consistent fragment of 

SMAH = ZFC + {there exists a strongly k-Mahlo cardinal}.

In fact, they are provably equivalent, in a weak 
fragment of ZFC, to the 1-consistency of SMAH.



WHAT ARE THE LARGE CARDINALS USED FOR 
THE UPPER SHIFT FIXED POINT THEOREM? 

k-subtle cardinals
k-large ordinals

We say that f:αk → α is regressive iff for all 0 < 
β1,...,βk < α, f(β1,...,βk) < min(β1,...,βk).

α is k-large iff for all f:αk → α, there exist 1 < β1 
< ... < βk+1 such that f(β1,...,βk) = f(β2,...,βk+1).

The k-large ordinal hierarchy is a simplified form of 
the k-subtle cardinal hierarchy.

The Upper Shift Fixed Point Theorem is provable in 

SUB+ = ZFC + “for all k there exists a k-large 
ordinal”, 

but not in any consistent fragment of 

SUB = ZFC + {there exists a k-large ordinal}k.

In fact, it is provable equivalent, in a weak fragment  
of ZFC, to the consistency of SUB.



WHAT ARE THE LARGE CARDINALS USED FOR 
THE UPPER SHIFT FIXED POINT THEOREM? 

k-critical linear orderings
We say that a linear ordering (X,<) is k-critical iff
i. it has no endpoints.
ii. for all regressive f:Xk → X, there exists b1 < ... 
< bk+1 such that f(b1,...,bk) = f(b2,...,bk+1).

THEOREM. The following are provably equivalent in ZFC. 
i. For all k, there exists a k-subtle cardinal.
ii. For all k, there exists a k-large ordinal.
iii. For all k, there exists a k-critical linear 
ordering. 
 The Upper Shift Fixed Point Theorem is provable in 

ZFC + “for all k there is a k-critical linear 
ordering”

but not in any consistent fragment of 

ZFC + {there is a k-critical linear ordering}k.
 
See: Subtle Cardinals and Linear Orderings, Annals of 
Pure and Applied Logic Volume 107, Issues 1-3, 15 
January 2001, Pages 1-34. 

http://www.sciencedirect.com/science/journal/01680072
http://www.sciencedirect.com/science/journal/01680072
http://www.sciencedirect.com/science/journal/01680072
http://www.sciencedirect.com/science/journal/01680072
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235614%232001%23998929998%23222132%23FLP%23&_cdi=5614&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7802e02bb6007a3fe526ccf6b493c7b4
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235614%232001%23998929998%23222132%23FLP%23&_cdi=5614&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7802e02bb6007a3fe526ccf6b493c7b4


A TEMPLATE

Recall 

UPPER SHIFT FIXED POINT THEOREM. For all R ∈ SDOI(Qk), 
some A = cube(A,{0})\R[A] contains its upper shift. 

Note that the upper shift is the coordinatewise lifting 
of the one dimensional upper shift us:Q → Q. 

Let M be any system of finitely many partial piecewise 
linear functions from Q into Q with rational 
coefficients. For A ⊆ Qk, write M[A] for the image of A 
under the coordinatewise lifting of the components of M.  

TEMPLATE. Let M be as given. Is it the case that for all 
R ∈ SDOI(Qk), there exists A = cube(A,{0})\R[A] 
containing M[A]?

CONJECTURE. Every instance of the Template is refutable 
in a weak fragment of ZFC, or provable in SUB+.  

This Template is subject to finite approximations 
analogous to those for the Upper Shift Fixed Point 
Theorem.



WHAT ABOUT THE STRONGEST LARGE 
CARDINAL HYPOTHESES?

We can extend conveniently to correspond to the 
strongest of the large cardinal hypotheses. 

Let A,B ⊆ Qk. A sharply contains B iff A contains B, and 
every lower cross section of B is a lower cross section 
of A. Lower cross sections of A are sets of the 
{(c,x2,...,xk) ∈ A: x2,...,xk < c}, c ∈ Q.

Qk≤ is the set of all x ∈ Qk, where each coordinate is ≤ 
the next. A is B on C means A ∩ C = B ∩ C.

SHARP UPPER SHIFT THEOREM. For all R ∈ SDOI(Qk), some A 
is cube(A,{0})\R[A] on Qk≤, and sharply contains its 
upper shift. 

The above corresponds to what is called the huge 
cardinal hierarchy. 
 Let h:Q → Q, where h(x) = (x+1)/2 if x ∈ [0,1]; x if 
x < 0; undefined otherwise. 
 Using both the upper shift and h pushes it higher 
than I1 but lower than I2. Finite approximations are 
palatable, but present opportunities for substantial 
simplifications.


