

:punoxe
'Ktrenqot
H
B
H
O N
N
D +
\mathbf{H}
D
D
D +
+
+
+
0
0 floating

＇HNI
GNF SS＇HN＇H＇TTCWOPNI פNIY\＆
00
H
0
K山ININNI
НО 山气O

1. Algebraically: $(\forall b>0)(\exists c)(b=c x c)$.
Also: Every polynomial of odd degree in one
variable has a root.
2. Logically: The least upper bound
principle for all first order formulas.

$$
\begin{aligned}
& \text { There are similar developments in elementary } \\
& \text { geometry rather than elementary algebra, } \\
& \text { with a particularly famous example of the } \\
& \text { parallel postulate in Euclidean geometry. } \\
& \text { These are also fixable. In many cases } \\
& \text { geometry has the much stronger kind of } \\
& \text { fixable Incompleteness - second order } \\
& \text { Incompleteness. Relationships between } \\
& \text { lst/2nd order Incompleteness is worthy of } \\
& \text { several talks, mathematical and } \\
& \text { philosophical. We focus on list order } \\
& \text { incompleteness here. }
\end{aligned}
$$

Now let us turn to the discrete ordered ring
axioms, DORA. This is very much like ofA
except that we only think of integers - no
reciprocal or division. This is also an
elementary school system, with $0,1,+$, ,, ,
But instead of anything about recip-
rocal/division, we add
Nothing is strictly between 0 and 1 .
Now consider this very basic statement
For all b there exists c such that c+c =
b orc $=$ b+1.

In fact, there is no way to add further
axioms to appropriately fix this
Incompleteness.
DORA $+2 *$ is essentially a rewrite of what
is normally called PA $=$ Peano Arithmetic. It
is well known that PA is essentially
equivalent to finite set theory = FST.
FST may be enough to prove or refute all
finitary mathematical statements that have,
as of $3 / 1 / 17$, been published in accepted
mathematical venues by mathematicians
operating as mathematicians, as opposed to
acting as f.o.m. provocateurs (like me).

?

-•

x	H
0	H
0	H
0	H
	H
	0

ADJACENT LIFTING. Every $f: N^{k} \rightarrow N^{k}$ has some x
<adj y with $f(x) \leq c f(y)$.

ч6noxy7 ssəuə7əтduroจuI
6uтエəメロロ
әч7
a
＋

P is shown, over an appropriately weak
system, to be provably equivalent to
consistency (or consistency variant) of
unexpectedly strong system T.

- Proof requires a transfinite induction of
length ω_{1}, similar to Cantor's Transfinite
Decomposition of closed sets of reals.
- Statement not "Borel true". I.e., no Borel
function taking two countable sets of reals
(as infinite sequences) and returning such a
function (again as an infinite sequence).
- No Borel function taking two countable
sets of reals and returning an indication of
a direction (forward or backward) for the
pointwise continuous function.

FOR ANY TWO COUNTABLE SETS OF REAL NUMBERS,
THERE IS A ONE-ONE POINTWISE CONTINUOUS
FUNCTION FROM ONE INTO THE OTHER.

Emulation Theory provides a particular
context for this Emulation Theme, which is
now a growing rich theory with plenty of
open questions and thematic projects. Some
of these results demonstrably require using
far more than the usual ZFC axioms for
mathematics.

+	0	
0	0	0
0		
0	0	0
0		

	PTO Kue əsn 7, पOP ӨM sпu山
	${ }_{1} \mathbf{1}^{\mathbf{x}}>\mathbf{X}>0{ }^{1}\left(\mathbf{X}^{1}, \mathbf{X}\right)^{\prime}\left(\mathbf{x}^{1} \mathbf{X}\right)$
	doJp st NOIJWTAW＇H TENIXZW
อưs ${ }_{z}\left[L^{\wedge} 0\right]$ ¢	SҰӨsqns エOF • T

[^0]

易
山IDITdXG
XVM
－utebe
Məu e
чจeoxdde

カも

[^0]: But that is merely 1-emulation.

