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Nautilus Magazine is an ambitious science 
magazine only a few years old. They won't 
let you see the article before it appears. 
They really have a skilled fact checker who 
queries you over the phone. We pretty much 
caught all of the seriously inaccurate 
statements.  
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However, one thing they really keep secret 
until the article appears is the TITLE. 
 When I read that it was "THIS MAN IS ABOUT 
TO BLOW UP MATHEMATICS", I got really 
scared. I was surely going to get paid a 
visit from the FBI or worse. And then I 
worried that my Texas visit would have to be 
cancelled for safety reasons.  
 So let me try to reassure you: if we all 
stay cool, we shouldn't have any violence at 
this talk! Let's see how it goes.  
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Actually, there are three titles floating 
around: 
 THIS MAN IS ABOUT TO BLOW UP MATHEMATICS 
(actual title) 
HARVEY FRIEDMAN IS ABOUT TO BRING 
INCOMPLETENESS AND INFINITY OUT OF 
QUARANTINE (subtitle) 
THE MAN WHO WANTS TO RESCUE INFINITY (this 
title was apparently discarded but still 
lives in cyberspace) 
 I don't know about you, but I like the 
second of these the best, especially with 
"big" inserted. 
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BRING INCOMPLETENESS AND BIG INFINITY OUT OF 
QUARANTINE 
 Well, enough weird fun. Let's do some math. 
 Incompleteness, in a general sense, started 
long before the late great Kurt Gödel.  
 OFA = ORDERED FIELD AXIOMS, based on 0,1,+,-
,x,1/,<. What about this famous statement in 
OFA, 
     There exists b such that b x b = 1+1 
 better known as "a square root of 2 exists"?  
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From about 2400 years ago: there is no 
rational square root of 2. We conclude, in 
modern terms, that the above statement is 
neither provable nor refutable in OFA. I.e., 
independent of OFA. For we have a model of 
OFA in which the statement is true - the 
usual ordered field of real numbers or much 
smaller ordered fields. And a model of OFA 
in which this is false - the usual ordered 
field of rationals. 
 Fast forward to modern times, and we know 
how to fix this Incompleteness. There are 
two well known ways. 
 



	
6	

1. Algebraically: (
∀
b > 0)(

∃
c)(b = c x c). 

Also: Every polynomial of odd degree in one 
variable has a root. 
2. Logically: The least upper bound 
principle for all first order formulas. 
 • Both 1,2 use infinitely many axioms - 
unavoidable.  
• They are logically equivalent - not at all 
obvious.  
• They entirely stamp out the incomplete-
ness: the resulting systems prove or refute 
all statements in its LANGUAGE.  
• Axiom instances are easily algorithmically 
recognized. 
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There are similar developments in elementary 
geometry rather than elementary algebra, 
with a particularly famous example of the 
parallel postulate in Euclidean geometry. 
These are also fixable. In many cases 
geometry has the much stronger kind of 
fixable Incompleteness - second order 
Incompleteness. Relationships between 
1st/2nd order Incompleteness is worthy of 
several talks, mathematical and 
philosophical. We focus on 1st order 
incompleteness here. 
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Now let us turn to the discrete ordered ring 
axioms, DORA. This is very much like OFA 
except that we only think of integers - no 
reciprocal or division. This is also an 
elementary school system, with 0,1,+,-,x,<.  
 But instead of anything about recip- 
rocal/division, we add 
     Nothing is strictly between 0 and 1. 
 Now consider this very basic statement 
     For all b there exists c such that c+c = 
b or c+c = b+1. 
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This is better known as "every number is 
even or odd". This statement is independent 
of DORA.  
 It's true in the ordered ring of integers, 
and false in the ordered polynomial ring in 
one variable over the integers.  
 Let's use the "logical" approach #2 for 
trying to fix this Incompleteness: 
 2*. Add to DORA: The least upper bound 
principle for all first order formulas. 
 G
ÖDEL. DORA + 2* still has Incompleteness.  
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In fact, there is no way to add further 
axioms to appropriately fix this 
Incompleteness. 
 DORA + 2* is essentially a rewrite of what 
is normally called PA = Peano Arithmetic. It 
is well known that PA is essentially 
equivalent to finite set theory = FST.  
 FST may be enough to prove or refute all 
finitary mathematical statements that have, 
as of 3/1/17, been published in accepted 
mathematical venues by mathematicians 
operating as mathematicians, as opposed to 
acting as f.o.m. provocateurs (like me).  
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E.g., it is widely believed that FLT = 
Fermat's Last Theorem is provable in FST, 
although this has not yet been firmly 
established. 
 This leaves open the possibility that f.o.m. 
investigators may be able to discover a 
finitary statement that is independent of 
FST, fully compatible with normal 
mathematical culture, and argue that the 
statement, although introduced by an f.o.m. 
provocateur, is inevitable

 over the 
realistically far out future of math. Note 
how such inevitably would answer objections 
that a provocateur was involved. 
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We have a growing body of steadily more 
convincing examples of what I call CONCRETE 
MATHEMATICAL INCOMPLETENESS. 
 The early examples of such Concrete 
Mathematical Incompleteness at the FST level 
are Goodstein's Theorem (1944, 1982), 
Paris/Harrington Theorem (1977), Hydra Game 
(1982). There are some later examples at the 
FST level that are arguably more aligned 
with ordinary mathematical culture.  
 My current favorites at the FST or PA level 
are at 747: Incompleteness/2, 2/3/17, on the 
FOM Archives:  
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For x,y 
∈
 N

k, x <adj y if and only if x,y are 
each strictly increasing and (x

2 ,...,x
k ) = 

(y
1 ,...,y

k-1 ).  
 x 
≤
c y if and only if each x

i  
≤
 y

i .  
 Ex: (3,5,8) <adj (5,8,9). (2,4,7) 

≤
c 

(2,5,8).  
 Obviously, x <adj y implies x 

≤
c y.  

 The interaction between these two binary 
relations on N

k, <adj and 
≤
c, is particularly 

interesting.  
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ADJACENT LIFTING. Every f:N
k 
→
 N

k has some x 
<adj y with f(x) 

≤
c f(y). 

 RECURSIVE ADJACENT LIFTING. Every recursive 
f:N

k 
→
 N

k has some x <adj y with f(x) 
≤
c 

f(y). 
 ELEMENTARY RECURSIVE ADJACENT LIFTING. Every 
elementary recursive f:N

k 
→
 N

k has some x 
<adj y with f(x) 

≤
c f(y). 

 POLYNOMIAL ADJACENT LIFTING. Every 
surjective polynomial P:N

k 
→
 N

k has some x 
≤
c y with P(x) <adj P(y). 
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• All four of these statements can only be 
proved by going slightly beyond FST (or PA 
or ACA

0 ).  
• They can only be proved by using some 
seriously noticeable use of infinitistic 
methods that clearly go beyond the 
statements themselves.  
• This represents Demonstrably Necessary Use 
of Machinery.  
• However, to prove these statements, it is 
sufficient to use only a tiny tiny tiny tiny 
tiny tiny tiny fragment of the usual ZFC 
axioms for mathematics.  
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250 page Introduction to a book draft at 
https://u.osu.edu/friedman.8/foundational-
adventures/boolean-relation-theory-book/  
 covering the state of Concrete Mathematical 
Incompleteness through BRT = Boolean 
Relation Theory.  
 • From below FST to around "uncountably many 
uncountable cardinalities", a very 
substantial fragment of ZFC.  
• Variety of Concrete Mathematical 
Incompleteness at various levels.  
• Also BRT, the predecessor of Emulation 
Theory, the latest rage. Both transcend ZFC.  
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In existing cases of Concrete Mathematical 
Incompleteness, P, we have the following:  
 P is shown, over an appropriately weak 
system, to be provably equivalent 

to the 
consistency (or consistency variant) of an 
unexpectedly strong system T. 
 Assuming T is "OK", this establishes the 
independence of P from T.  
• If P is refutable from T then T proves its 
own inconsistency (or variant), so T not OK.  
• If P is provable from T then T proves its 
own consistency. By Gödel, T is 
inconsistent, and so T is definitely not OK.  



	
18	

Before diving in to Emulation Theory, I want 
to mention a few more results in Concrete 
Mathematical Incompleteness - ones that 
don't really challenge ZFC, but nonetheless 
represent a wide range of important levels 
of Incompleteness. And it may even threaten 
to touch your own mathematical interests. I 
would certainly like to hear about that! 
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IN ANY LONG ENOUGH SEQUENCE x
1 ,...,x

n  FROM 
{1,2,3}, SOME (x

i ,...,x
2i ) IS A SUBSEQUENCE OF 

SOME LONGER (x
j ,...,x

2j ).  
IN ANY LONG ENOUGH SEQUENCE x

1 ,...,x
n  FROM 

{1,...,k}, some (x
i ,...,x

2i ) IS A SUBSEQUENCE 
OF SOME LONGER (x

j ,...,x
2j ). 

 • Second is provable in 3-quantifier induct-
ion, but not in 2-quantifier induction.  
• Size for the first is > 7198th Ackermann 
function at 158,386 = A

7198 (158,386).  
• Any proof of the first in EFA = exp 
function arithmetic, needs > A

7198 (158,385)  
symbols, a bit much. Same for SEFA. 
• This is an ULTRA FINITE INCOMPLETENESS. 
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IN EVERY INFINITE SEQUENCE OF FINITE TREES, 
SOME TREE IS HOMEOMORPHICALLY EMBEDDABLE 
INTO A LATER TREE. 
IN EVERY INFINITE SEQUENCE OF FINITE GRAPHS, 
SOME GRAPH IS MINOR INCLUDED IN A LATER 
GRAPH.  
• First requires construction of a sequence 
of integers using all sequences of integers. 
• Second requires infinite iteration of the 
above.   
• Such constructions were rejected by 
Poincare and Weyl as circular and useless.  
• Today they are widely accepted, as they 
lie well within ZFC. 
• Same even for very computable sequences. 
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FOR ANY TWO COUNTABLE SETS OF REAL NUMBERS, 
THERE IS A ONE-ONE POINTWISE CONTINUOUS 
FUNCTION FROM ONE INTO THE OTHER.  
 • Proof requires a transfinite induction of 
length 

ω
1 , similar to Cantor's Transfinite 

Decomposition of closed sets of reals.  
• Statement not "Borel true". I.e., no Borel 
function taking two countable sets of reals 
(as infinite sequences) and returning such a 
function (again as an infinite sequence).  
• No Borel function taking two countable 
sets of reals and returning an indication of 
a direction (forward or backward) for the 
pointwise continuous function.  
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EVERY BOREL F:I
∞ 
→
 I

∞, INVARIANT UNDER 
PERMUTATIONS (IN SEVERAL SENSES), MAPS SOME 
SEQUENCE TO A SUBSEQUENCE.  
EVERY SHIFT INVARIANT BOREL F:K 

→
 K (IN 

VARIOUS SENSES) MAPS SOME x TO 
(x

1 ,x
4 ,x

9 ,x
16 ,...).  

 • Not provable in countable set theory, but 
just beyond. First proofs: Cohen's forcing.  
• Proof of first conveniently converts to a 
Baire category argument, applied to a 
necessary nonseparable(!) topology. 
• Specifically to I

∞, where the interval I is 
given the DISCRETE(!) topology.  
• Not provable in SEPARABLE MATHEMATICS. 
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EVERY BOREL SUBSET OF 
ℜ

2, SYMMETRIC ABOUT y 
= x, CONTAINS OR IS DISJOINT FROM THE GRAPH 
OF A BOREL FUNCTION FROM 

ℜ
 INTO 

ℜ
. 

 • Requires uncountably many uncountable 
cardinalities, quite a strong fragment of 
ZFC.  
• Essentially equivalent formulation: Proof 
requires uncountably many transfinite 
iterations of the power set operation.  
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We now jump to EMULATION THEORY.  
     According to Nautilus Magazine, this is 
going to be used to blow up mathematics! 
Whoops, I shouldn't have said that. 
 EMULATION THEME. FOR ANY OBJECT OF A CERTAIN 
KIND, SOME MAXIMAL EMULATION (OF THE SAME 
KIND) EXHIBITS SPECIFIED SYMMETRY.  
 • S is an emulation of E if it resembles it 
in a specified way. 
• Maximal emulation is an emulation which if 
enlarged, stops being an emulation.  
• Symmetry typically requires invariance 
under transformations.  



	
25	

Of course, we want a context where at least 
everything has some maximal emulation. It 
suffices to have the union of emulations be 
an emulation. This will happen if emulation 
is finitely based.  
 Looking a bit out in the future, there is a 
more general formulation: 
 EMULATION THEME*. FOR CERTAIN NATURAL 
PARTIAL ORDERINGS, EVERY POINT HAS A MAXIMAL 
SUCCESSOR EXHIBITING SPECIFIED SYMMETRY.  
 For this, we generally want the partial 
orderings to be closed under sups.  
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A lesson to be learned from Emulation Theory 
of the future? - maybe everybody, no matter 
how ugly, can make maximal general 
improvement of themselves, while also being 
beautiful in specific ways.  
 Emulation Theory provides a particular 
context for this Emulation Theme, which is 
now a growing rich theory with plenty of 
open questions and thematic projects. Some 
of these results demonstrably require using 
far more than the usual ZFC axioms for 
mathematics.  
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• Emulation Theory (here) lives in Q[0,1]
k. 

• Q[0,1] is the closed unit interval in the 
rationals Q.  
• Objects of Emulation Theory are the 
subsets of Q[0,1]

k. 
 We need to explain emulations and the 
symmetry. We start with the symmetry, as it 
has very deep roots in abstract set theory.   
 DEFINITION 1. We say that S 

⊆
 Q[0,1]

2 is drop 
equivalent at (x,y),(x',y) if and only if 
for all z < y, (x,z) in S iff (x',z) in S. 
 Let's draw a picture for drop equivalence.  
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 _______________ 
|               | 
|    A   B      | 
|    |   |      | S 

⊆
 Q[0,1]

2 is drop 
|    |   |      | equivalent at A,B defined 
|____|___|______| below: 
 This rectangle is Q[0,1]

2 with points A = 
(x,y), B = (x',y). We have set S 

⊆
 Q[0,1]

2 in 
the background. As we drop from A and B, we 
want each point below A to lie in S iff the 
corresponding point below B lies in S.  
Does every S 

⊆
 Q[0,1]

2 exhibit such symmetry? 
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THEOREM 1. There exists S 
⊆
 Q[0,1]

2 where 
drop equivalence holds only trivially. I.e., 
S is drop equivalent at (x,y),(x',y) if and 
only if x = x' 

∨
 y = 0.   

 We can repair Theorem 1 at some cost. 
 THEOREM 2. Every S 

⊆
 Q[0,1]

2 is drop 
equivalent at some (x,y),(x',y), x ≠ x' 

∧
 y 

> 0, if we replace Q[0,1] by some other 
dense linear ordering with endpoints 0,1. 
These replacements can be of any uncountable 
cardinality but not countable. 
 So far we are not threatening ZFC. However!  
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THEOREM 3. Every S 
⊆
 Q[0,1]

2 is drop 
equivalent at some (x,x),(x',x), 0 < x < x', 
provided we replace Q[0,1] by some gigantic 
dense linear ordering with endpoints 0,1. 
The size required here is far beyond 
anything that can be proved to exist in ZFC. 
  _______________ 
|               | 
|          A  B | 
|          |  | | 
|          |  | | 
|__________|__|_| 
 Here A is on the diagonal.  
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Don't get excited yet! This is an example of 
Mathematical Incompleteness that is closely 
related to well known developments in large 
cardinal theory. The statement is intensely 
set theoretic, and the literature already 
has plenty of Mathematical Incompleteness in 
the highly set theoretic realm. 
 Yes, this is much simpler than the typical 
set theoretic independence result that you 
find. But I needed to make such 
simplifications in the set theory realm as a 
preliminary step toward the main events.   
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DIGRESSION - THE SMALLEST LARGE CARDINAL 
 We state this just using linear orderings. 
It is usually stated more esoterically.  
 A linear ordering D is inaccessible iff  
i. D has a limit point.  
ii. Every function from the power set of any 
given proper initial segment of D, into D, 
stays within some proper initial segment of 
D. 
 Without i, we can use the positive integers. 
Without ii, we can use the positive integers 
with 

∞
 at the top.  
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THEOREM 4. Suppose there are two 
inaccessible cardinalities. Then "there 
exists an inaccessible linear ordering" is 
independent of ZFC. 
 • Inaccessibles ~ Grothendieck Universes.  
• Large Cardinals required for Emulation 
Theory are far more ferocious. 
• Emulation Theory gets to the essence of 
Theorem 3 while staying in Q[0,1]!  
     REPEATING: 
THEOREM 3. Every S 

⊆
 Q[0,1]

2 is drop equivalent 
at some (x,x),(x',x), 0 < x < x', provided we 
replace Q[0,1] by some gigantic dense linear 
ordering with endpoints 0,1. The size required is 
far beyond anything proved to exist in ZFC. 
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The large cardinals involved in Theorem 3 
are treated in 
     H. Friedman, Subtle Cardinals and 
Linear Orderings, Annals of Pure and Applied 
Logic, Volume 107, Issues 1–3, 15 January 
2001, Pages 1–34. 
https://u.osu.edu/friedman.8/files/2014/01/s
ubtlecardinals-1tod0i8.pdf 
 PROTOTYPE 1. For subsets of Q[0,1]

2, some 
MAXIMAL EMULATION is drop equivalent at some 
(x,x),(x',x), 0 < x < x'. 
 Thus we don't use any old subset of Q[0,1]

2, 
but rather some sort of associate. 
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• Maximal Emulations, yet to be defined, 
allow rationals to be moved around in order 
preserving ways.  
• Order is used on Q[0,1], and NOTHING more. 
• This allows for a SIMPLIFICATION here. We 
can say what x,x' are IN ADVANCE.  
• We use the friendly numbers 1/2,1.  
 PROTOTYPE 2. For subsets of Q[0,1]

2, some 
MAXIMAL EMULATION is drop equivalent at 
(1,1/2),(1/2,1/2). 
 The above is the Lead Statement in Emulation 
Theory for dimension 2 - once I tell you 
what maximal emulations are.  
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DEFINITION 2. x,y 
∈
 Q

k are order equivalent 
iff their coordinates have the same relative 
order. I.e., for all 1 

≤
 i,j 

≤
 k, x

i  < x
j  iff 

y
i  < y

j . S is a 1-emulation of E 
⊆
 Q[0,1]

2 
iff S 

⊆
 Q[0,1]

2 and E,S have the same 
elements up to order equivalence. 
 EXERCISE. Every subset of Q[0,1]

2 has a 
maximal 1-emulation. In fact, it is unique.  
 MAXIMAL EMULATION DROP/1. MED/1. For subsets 
of Q[0,1]

2, some maximal 1-emulation is drop 
equivalent at (1,1/2),(1/2,1/2). 
 But MED/1 is actually very easy to prove.  
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• Maximal 1-emulations are very simple.  
• Every maximal 1-emulation is merely a 
union of equivalence classes under order 
equivalence on Q[0,1]

2.  
• Easy exercise that every such union is 
automatically drop equivalent at 
(1,1/2),(1/2,1/2).   
 But that is merely 1-emulation.  
 DEFINITION 3. S is an r-emulation of E 

⊆
 

Q[0,1]
2 if and only if S

r,E
r have the same 

elements up to order equivalence of 2r-
tuples.  
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The idea behind r-emulation is that E,S have 
the same r fold interactions between 
elements, from a strictly order theoretic 
point of view.   
 EXERCISE. Every subset of Q[0,1]

2 has a 
maximal r-emulation. If r 

≥
 2, not 

necessarily unique. 
 MAXIMAL EMULATION DROP/2. MED/2. For subsets 
of Q[0,1]

2, some maximal r-emulation is drop 
equivalent at (1,1/2),(1/2,1/2). 
 What is the status of MED/2? Is it provable 
in ZFC? 
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• We prove MED/2 using the existence of an 
uncountable set, well within ZFC.  
• Suspect countable set theory or ZFC\P is 
not enough.  
 We now go to THREE DIMENSIONS! 
 MAXIMAL EMULATION DROP/3. MED/3. For subsets 
of Q[0,1]

3, some maximal r-emulation is drop 
equivalent at (1,1/2,1/3),(1/2,1/3,1/3). 
 Here we require: for all p < 1/3, (1,1/2,p) 
∈
 S 

↔
 (1/2,1/3,p) 

∈
 S. I.e., drop vertic-

ally from points (1,1/2,1/3),(1/2,1/3,1/3) 
in the cube Q[0,1]

3 down to the base z = 0.  
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• Our proof of MED/3 uses the large 
cardinals mentioned before with Theorem 3.  
• We think it likely that MED/3 is not 
provable in ZFC.  
• The claim we are making is that 
 MAXIMAL EMULATION DROP/4. MED/4. For subsets 
of Q[0,1]

k, some maximal r-emulation is drop 
equivalent at (1,1/2,...,1/k),(1/2,...,1/k, 
1/k). 
 is provably equivalent, over WKL

0 , to 
Con(SRP), SRP = ZFC + {there exists a k-SRP 
ordinal}

k . Thus MED/4 is independent of ZFC. 
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Low dimension situation should clarify in 
2017. MED/4 still involves countably 
infinite objects. The given subset of Q[0,1]

k 
can be taken to be finite, but the maximal 
emulation cannot. We naturally demand more 
concreteness. Emulation Theory addresses 
this in two different ways. 
 • The Implicit Way. Use Math Logic Machinery 
to uniformly convert statements of a form 
similar to MED/4 into equivalent statements 
involving only finite objects.  
• The Explicit Way. Dig in deeper and say 
similar things of similar simplicity, 
involving only finite objects. 



	
42	

THE IMPLICIT WAY 
 The logical form of MED/4 (using only finite 
given sets, which is equivalent) is such 
that it is an easy undergraduate math logic 
exercise to reformulate it as asserting that 
an effectively given list of sentences in 
first order predicate calculus with equality 
each have a countable model.  
 By Gödel's Completeness (not Incompleteness) 
Theorem, MED/4 is equivalent to a statement 
involving proofs in predicate calculus, with 
only finite objects. The explicitly finite 
statement thus obtained is in 

Π
01  form. 
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There is an important feature of 
Π

01  
sentences such as FLT, called provable 
falsifiability. We know, a priori, that if a 
given 

Π
01  statement is false then it can in 

principle be verified to be false.  
 In fact, under a careful treatment, provable 
falsifiability is equivalent to being 
implicitly 

Π
01 . 

 However, the 
Π

01  forms obtained by this 
general method lose their purely 
mathematical character. So we can, and do, 
want more. 
 



	
44	

THE EXPLICIT WAY 
 We discovered a new approach recently. Let's 
examine MED/4 again: 
 MED/4. For subsets of Q[0,1]

k, some maximal 
r-emulation is drop equivalent at 
(1,1/2,...,1/k),(1/2,...,1/k,1/k). 
 PROTOTYPE. For finite subsets of Q[0,1]

k, 
some finite weakly maximal r-emulation is 
drop equivalent at (1,1/2,...,1/k),(1/2, 
...,1/k,1/k). 
 I won't get into this further here. 
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Emulation Theory is now interacting with the 
nearly largest large cardinal hypotheses 
using new ideas approaching compatibility 
with ordinary mathematical culture. 
      
We'll stop and invite you to follow 
Emulation Theory progress and other topics 
on the FOM email list at 
 FOM Information Page 
http://www.cs.nyu.edu/mailman/listinfo/fom 
FOM Archives 
http://www.cs.nyu.edu/pipermail/fom/ 
 IT APPEARS THAT MATH HAS SURVIVED THIS TALK! 


