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TURING MACHINES - GENERAL STRUCTURE

Turing machines are the original theoretical model of 
computation, due to Alan Turing, 1937. It is extremely 
primitive. We follow the version by Emil Post, 1947. 
Remarkably, from the theoretical point of view, it is a 
“complete” model of computation - in various senses of 
“complete”. 

A TM consists of a “tape” which is infinite in both 
directions, divided into unit squares indexed by the integers. 
A TM also comes with a “reading head” which always hovers over 
a square of tape, and “reads” what is on that square of tape.

Computation begins based on a “program” and an “input”. First, 
“initialization” takes place. At any stage of computation, the 
TM is in a “state”, each square of tape has a “symbol” written 
on it, and the reading head is “on” a square of tape.



TURING MACHINES - GENERAL OPERATION
TM, infinite two way infinite tape, reading head, program, input, 
initialization, state, symbol.

The states (state symbols) are written q0,q1,... . The 
symbols (tape symbols) are written S0,S1,... .  

Initialization is based on the input. It causes the TM to go 
into state q0 (the initial state), with the reading head at 
square 0. The squares of tape have symbols placed on them 
according to the input.  

Computation continues step by step, according to the 
program. The reading head may change symbols it is reading, 
and may move left or right one square. The TM state may 
change. Computation halts if and when no program instruction 
applies. The output is read off from the symbols on the 
tape. If computation never halts, then there is no output.



TURING MACHINES - INITIALIZATION
TM, infinite two way tape, reading head, program, input, initialization, state, 
symbol. Reading changing symbols, moving left/right. Halting when no instruction 
applies. Halting yields output. No halting means no output. States q0,q1,... . 
Symbols S0,S1,... .

The inputs for a TM are finite sequences of nonnegative 
integers. The outputs for a TM are nonnegative integers. (For 
some purposes, finite strings from a finite alphabet are used). 

Let n1,...,nk ∈ N. S0 serves as the “blank”, S1 as the “1”.

Initialize as follows: at square 0, put n1+1 S1’s, followed by 
S0, followed by n2+1 S1’s, followed by S0, ..., followed by nk+1 
S1’s, followed by all S0’s. To the left of square 0, put all 
S0’s. Put TM into state q0 (initial state). Put heading head on 
square 0. 

Note that if k = 0 then all squares have S0 after initialization. 

 
  



TURING MACHINES - INSTRUCTIONS
TM, infinite two way tape, reading head, program, input, initialization, state, 
symbol. Reading changing symbols, moving left/right. Halting when no instruction 
applies. Halting yields output. No halting means no output. States q0,q1,... . 
Symbols S0,S1,... . q0 = initial state, S0 = blank, S1 = 1. Initialize with 
n1,...,nk from N. Output (if any) from N. 

Instructions are quadruples. There are 3 types of instructions.

qiSjLqk  If in state qi, reading Sj, move reading head to the 
left and go into state qk.

qiSjRqk   If in state qi, reading Sj, move reading head to the 
right and go into state qk.

qiSjSmqk  If in state qi, reading Sj, replace by Sm and go into 
state qk.

Applicability of an instruction is based on the first two 
items. The last two items tell us what action is to be taken.  



TURING MACHINES - COMPUTATIONS
TM, infinite two way tape, reading head, program, input, initialization, state, 
symbol. Reading changing symbols, moving left/right. Halting when no instruction 
applies. Halting yields output. No halting means no output. States q0,q1,... . 
Symbols S0,S1,... . q0 = initial state, S0 = blank, S1 = 1. Initialize with 
n1,...,nk from N. Output (if any) from N. Instructions: qiSjLqk  qiSjRqk  qiSjSmqk  

A program is a finite set of instructions, where any two 
instructions with the same first two items are the same. 
Computation proceeds after initialization, by executing the 
at most one instruction that applies. 

Halting occurs if and when no instruction applies. Upon 
halting, the output is the total number of S1’s on the tape. 

We will use P for programs, and α for finite sequences from 
N (nonnegative integers). We write VAL(P,α) for the output 
of the TM computation with program P and input α. 

CAUTION: VAL(P,α) may not be defined. VAL(P,α) is defined if 
and only if halting occurs with program P and input α.  



TURING COMPUTABLE FUNCTIONS
VAL(P,α) is the output of the TM computation with program P and input α (a finite 
sequence from N).

Write N* for the set of all finite sequences from N. It is 
important to consider not only f:N* ➞ N, but also partially 
defined f:N* ➞ N; where f is defined only at some arguments 
from N*.

We say that a program P computes partial f:N* ➞ N if and only 
if each f(α) is VAL(P,α).

We say that partial f:N* ➞ N is Turing computable if and only 
if there is a program that computes f. 

Obviously, partial f:Nk ➞ N are partial f:N* ➞ N. 



CHURCH’S THESIS

After Turing machines were invented, many richer models of 
computation were studied. It was shown that all these models of 
computation lead to the same class of computable partial f:Nk 
➞ N. 

On this basis, Alonzo Church formulated the thesis that any 
“computable” partial f:Nk ➞ N is Turing computable. This 
supports use of the intuitive notion of “computable” instead of 
Turing computable. This is a great simplification.  

In particular, because of Church’s Thesis, we never have to go 
back to the definition of a Turing machine. 

We are going to use Church’s Thesis to obtain a number of 
elegant results. But before this, we will prove a theorem that 
strongly supports Church’s Thesis. 



CHURCH’S THESIS - A JUSTIFICATION
“All computable partial f:Nk ➞ N are Turing computable”

There is a standard system of axioms and rules for mathematics 
called ZFC, which we will discuss in some detail in Lecture 5.

Suppose we have an intuitively computable partial f:Nk ➞ N. It 
seems clear that we should have a definition of f within ZFC 
which is not only correct, but also has the following 
properties.

If f(n1,...,nk) = m then ZFC proves “f(n1,...,nk) = m”. 
If ZFC proves “f(n1,...,nk) = m” then f(n1,...,nk) = m.

THEOREM. The above holds for f iff f is Turing computable. 
Furthermore, if we replace ZFC here by any “reasonable” system 
with finitely many axioms, then f is Turing computable. 

We will now assume Church’s Thesis.  



TERMINOLOGY: RECURSIVE, PARTIAL RECURSIVE
In light of Church’s Thesis, we stop mentioning “Turing”, since 
all reasonable models of computation are the same as intuitive 
computability. 

The standard terminology has become 

Recursive function f:Nk ➞ N, for Turing computable f:Nk ➞ N.

Partial recursive function f:Nk ➞ N for Turing computable 
partial f:Nk ➞ N. 

In some modern texts and papers, Computable function and 
partial computable function are used instead of recursive 
function and partial recursive function.

≅ is used for partial equality. a ≅ b means “either a = b, or 
a,b are both undefined”. 



RECURSIVE FUNCTIONS - COMPOSITION 

THEOREM. If f,g:N ➞ N are recursive, then so is fog. 

To compute fog(n), first compute g(n). Then compute f(g(n)) = 
fog(n). This is an intuitive algorithm based on those for f,g. 

THEOREM. Suppose f:Nr ➞ N and g1,...,gr:Nk ➞ N are recursive. 
Then h:Nr ➞ N is recursive, where h(n1,...,nr) = 
f(g1(n1,...,nk),...,gr(n1,...,nk)).

CHALLENGE: Prove this Theorem. 



PARTIAL RECURSIVE FUNCTIONS - COMPOSITION

Consider f(g(x)). In order for this to be defined, g(x) must be 
defined. More generally, in order for f(g1(x),...,gr(x)) to be 
defined, we require that g1(x),...,gr(x) be ALL defined. 

THEOREM. If f,g:N ➞ N are partial recursive, then so is fog. 

To compute fog(n), first compute g(n). If and when g(n) gets 
computed, compute f(g(n)) = fog(n). This is an intuitive 
algorithm based on those for f,g. 

THEOREM. Suppose f:Nr ➞ N and g1,...,gr:Nk ➞ N are partial 
recursive. Then h:Nr ➞ N is partial recursive, where 
h(n1,...,nr) ≅ f(g1(n1,...,nk),...,gr(n1,...,nk)).

CHALLENGE: Prove this Theorem. 



RECURSIVE FUNCTIONS - CONDITIONAL BRANCHING
Conditional branching is written using IF THEN ELSE. 
 

IF n = 5 THEN m ELSE r

defines a function of n,m,r. It is m if n = 5; r otherwise 

IF n = 5 THEN m ELSE IF m = 7 THEN r ELSE t

is a function of n,m,r,t. It is m if n = 5; r if m = 7 ∧ 
n ≠ 5; t otherwise.  

THEOREM. Let f1,...,fr,g1,...,gr,h:Nk ➞ N be recursive. 
Then F:Nk ➞ N is recursive, where F(n1,...,nk) = IF 
f1(n1,...,nk) = 0 THEN g1(n1,...,nk) ELSE IF f2(n1,...,nk) 
= 0 THEN g2(n1,...,nk) ELSE ... ELSE IF fr(n1,...,nk) = 0 
THEN gr(n1,...,nk) ELSE  h(n1,...,nk).

CHALLENGE: Prove this Theorem. 



RECURSIVE SETS
Let A ⊆ Nk. The characteristic function of A, written χ(A), is 
defined by 

χ(A)(n) = 1 if n ∈ A; 0 otherwise.

We say that A ⊆ Nk. is recursive if and only if χ(A) is 
recursive. 

THEOREM. A ⊆ Nk is recursive if and only if there is an 
algorithm which, at every x in Nk, eventually determines 
whether or not x is in A.

THEOREM. The union (intersection) of finitely many recursive 
subsets of Nk is recursive. The complement of every recursive 
subset of Nk (relative to Nk) is recursive. Every finite subset 
of Nk is recursive.

CHALLENGE: Prove these Theorems. 



RECURSIVELY ENUMERABLE SETS
A ⊆ Nk is recursive if and only if χ(A) is recursive. 

We say that A ⊆ Nk is recursively enumerable (r.e.) if and only 
if A is the domain of a partial recursive function. 

THEOREM. A ⊆ Nk is r.e. if and only if there is an algorithm 
which, when presented with x in Nk, halts if x is in A, and 
runs forever if x is not in A.  

THEOREM. If A ⊆ Nk is recursive then A is r.e. 

THEOREM. The union (intersection) of any finite number of r.e. 
subsets of Nk is r.e. 

CHALLENGE: Prove these Theorems. 

  



RECURSIVE SETS AS R.E. SETS
A ⊆ Nk is recursive if and only if χ(A) is recursive. 
A ⊆ Nk is r.e. if and only if A is the domain of a partial recursive function. 

The following Theorem defines the recursive sets in terms of 
the r.e. sets.  

THEOREM. A ⊆ Nk is recursive if and only if A and Nk\A are r.e.

Assume A ⊆ Nk be recursive. Then Nk\A is recursive (previous 
challenge). Hence A and Nk\A are r.e. (previous challenge). 

Assume A,Nk\A be r.e. Given x in Nk, look for x in A, and also 
look for x in Nk\A. You must “sequentially time share” between 
the two algorithms, so that you don’t get stuck forever 
running just one of the two. (Perfect time sharing requires 
concurrency, which we are not allowing.)

CHALLENGE: Be more explicit about the time sharing used here. 



RANGES OF (PARTIAL) RECURSIVE FUNCTIONS

THEOREM. The range of every recursive f:Nk ➞ N is r.e.

Given n in N, apply f successively to all of Nk and wait until 
you get the value n. 

CHALLENGE: Make “apply f successively to all of Nk” rigorous.

THEOREM. The range of every partial recursive f:Nk ➞ N is r.e.

CHALLENGE: Prove the above Theorem. You must use a lot of 
sequential time sharing.

THEOREM. Every nonempty r.e. subset of N is the range of some 
recursive f:N ➞ N. 

CHALLENGE: Prove the above Theorem. You must consider “number 
of steps of computation”. 



PARTIAL RECURSIVE ENUMERATION OF PARTIAL 
RECURSIVE FUNCTIONS

A partial recursive enumeration of the partial recursive 
functions is a listing fn:N ➞ N of all partial recursive 
functions from N into N, such that the partial function 

f(n,m) ≅ fn(m)
is partial recursive. 

There is a reasonable enumeration without repetition of the 
Turing machine programs, P0,P1,... . It is customary to write 
φ0,φ1,... for the partial recursive functions from N to N that 
are computed by P0,P1,..., respectively. Note that 

φ(n,m) ≅ φn(m)
is partial recursive. Hence φ0,φ1,... is a partial recursive 
enumeration of the partial recursive functions. 



R.E. ENUMERATION OF THE R.E. SETS

We now have a partial recursive enumeration φ0,φ1,... of the 
partial recursive functions from N into N. 

An r.e. enumeration of the r.e. sets is a listing A0,A1,... of 
all r.e. subsets of N, such that the set 

{(n,m): m ∈ An}

is an r.e. subset of N2.

CHALLENGE: Prove that dom(φ0),dom(φ1),... is an r.e. 
enumeration of the r.e. subsets of N.

It is very common to write We for dom(φe).

Thus we have an r.e. enumeration W0,W1,..., of the r.e. subsets 
of N.



AN R.E. SET THAT IS NOT RECURSIVE
We have an r.e. enumeration W0,W1,..., of the r.e. subsets of N.

What about 

{e: e ∈ We}?

CHALLENGE: Show that the above set is r.e. 

Its complement (relative to N) is 

{e: e ∉ We}.

CHALLENGE: Show that the above set is not among the W0,W1,... . 
I.e., it is not r.e. 

Hence {e: e ∈ We} is an r.e. set whose complement is not r.e. 
Since the complement of a recursive set is recursive, clearly 
{e: e ∈ We} is an r.e. set that is not recursive.



A MOST POWERFUL R.E. SET
The set {e: e ∈ We} turns out to be a “most powerful” r.e. set 
in the following sense. 

Let A,B ⊆ N. We say that A is reducible to B if and only if 
membership in A can be algorithmically reduced to membership 
in B, in the following sense. 

There is a recursive f:N ➞ N such that for all n ∈ N, 

n ∈ A if and only if f(n) ∈ B.

CHALLENGE: Every r.e. subset of N is reducible to {e: e ∈ We}.

We say that B ⊆ N is complete r.e. if and only if B is r.e. 
and every r.e. subset of N is reducible to B. 

Thus {e: e ∈ We} is complete r.e. 



COMPLETE R.E. SETS ARE ALL THE “SAME”

We say that A,B ⊆ N are recursively isomorphic if and only if 
there is a recursive bijection f:N ➞ N which maps A onto B.

CHALLENGE: Show that recursively isomorphic is an equivalence 
relation. 

THEOREM. Any two complete r.e. sets are recursively isomorphic. 

CHALLENGE: Prove the above Theorem. 



HILBERT’S TENTH PROBLEM

Hilbert’s 10th Problem calls for an algorithm that determines 
whether a given polynomial with integer coefficients has a 
zero at some integer arguments. 

We can rigorously formulate this problem as follows. 

We can naturally view any polynomial with integer coefficients 
and variables v1,v2,... as a finite sequence of elements of N 
(i.e., an element of N*): Read the polynomial as a sequence of 
items from left to right. The items are 

i. Integers (subscripts of variables, coefficients, and 
exponents).
ii. The symbols +,-,v. 

There is no need for parentheses or the multiplication symbol.
 



HILBERT’S TENTH PROBLEM
Algorithm determining whether integral polynomials have integral zeros?
i. Integers (subscripts of variables, coefficients, and exponents).
ii. The symbols +,-,v. 

We arbitrarily assign 0,1,2 to +,-,v. In this way, every 
integral polynomial is represented as an element of N*.

We can now consider the set 

H10 = the set of all integral polynomials 
with an integral zero, viewed as an element of N*.

THEOREM. The set H10 ⊆ N* is r.e.

CHALLENGE: Rework this Lecture using N* instead of the Nk.  

CHALLENGE: Prove the above Theorem. 
   



HILBERT’S TENTH PROBLEM

THEOREM. H10 ⊆ N* is complete r.e.

COROLLARY. There is no algorithm for determining whether an 
integral polynomial has an integral zero.

THEOREM. Every r.e. subset of N is the set of values in N of 
some integral polynomial. 

Nobody thinks that we have the “right” proof of these results. 
The proofs raise more questions than they answer. The situation 
has been roughly constant in this respect since the 1970s. 

CHALLENGE: Find a new proof of the Corollary. 

CHALLENGE: Is there an algorithm for determining whether an 
integral polynomial has a rational zero? Probably not.
 


