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I wish to thank the organizers for letting me come here and 
vie a talk at this splendid event.  
 
I am not sure when I first met Lou. It was probably around 
1980 at a logic meeting at MIT (confirmed by Lou).  
 
Lou is driven by a vision of great foundational 
significance. This is the tame/wild dichotomy, which 
everybody here is fully familiar with. The tame perspective 
provides deep links to core mathematics.  
 
The tame perspective is of course deeply reflected in o-
minimality. It is not yet clear just what tameness means 
more generally, as, for instance, mathematicians do like to 
work in the ring of integers and with the sine function on 
all of ℜ.  
 
Lou was an early pioneer in o-minimality, and has 
consistently remained one of the very few top researchers 
in the area. I am in no position to say anything serious 
about the book - but it obviously promises to provide new 
deep foundations for asymptotic analysis.  
 
At least as impressive as this great vision and energy is 
his Ph.D. production. His Ph.D. list is amazing both in 
quantity and quality. He still has 6 Ph.D. students! And 
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these students go on to greatly advance o-minimality and 
various tame adventures, with great effectiveness.  
Now lest you think I am merely a disciple of Lou's, let me 
say that I don't necessarily agree with everything that Loy 
says.  
 
I remember being at a meeting with Lou, and several of us 
were at the hotel. Lou offered up the following opinion: 
 
"the only interesting thing that Gödel ever did was his 
beta function" 
 
(Lou immediately disavoed this statement).  
 
If you happened to have forgotten what this is, this is 
Gödel's ternary function beta(n,m,i), definable in the ring 
of integers, where every finite sequence from N is of the 
form beta(n,m,0), beta(n,m,1), ..., beta(n,m,r).  
 
Well, most people here know that I am not going to agree 
that this is the only interesting thing Gödel ever did. But 
in all fairness to Lou, I think that many model theorists 
at the time agreed with at least a weak form of this, and 
maybe this is true today. But they may not have the 
refreshing openness to express it.  
 
In any case, Lou has since said that he has moderated his 
views on Goödel. It does seem that Lou has mellowed. (Lou 
added that it seems that I have mellowed also).  
 
Now for the boring part of my talk.  
 
ABSTRACT. Given a function or family of functions on a 
domain, can we extend it or all of them to a larger domain 
preserving certain properties? This general kind of problem 
seems to cut across a wide variety of subjects including 
model theory, recursion theory, set theory, algebra, 
geometry, and analysis. We discuss some contexts, including 
the extension of families of real functions to Conway's 
surreal number system. 
 
INTRODUCTORY REMARKS 
 
There appears to be a considerable subject surrounding the 
extension of functions on one domain to functions on a more 
inclusive domain, preserving various properties.  
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This is already highly nontrivial when we merely ask for 
relationships between an individual function and its 
extension. More generally, we ask for relationships between 
several functions and their extensions.  
 
This topic seems to be in need of a systematic treatment 
that cuts across, at least, model theory, recursion theory, 
set theory, algebra, geometry, and analysis. I hate to 
disappoint you, but the possibility of a unified subject 
only consciously occurred to me in preparation of my talk. 
I don't have any really appropriate systematic development, 
but consider these basic observations. 
 
i. In model theory, by ultrapower or compactness arguments, 
we can extend functions preserving first order properties. 
This can take familiar functions to necessarily wild 
functions. 
 
ii. In algebra/geometry, we can extend functions from 
(quite general) o-minimal structures, preserving first 
order properties. This goes from tame functions to tame 
functions.  
 
iii. In analysis, we can extend analytic functions via 
analytic continuation, preserving considerable properties. 
This goes from tame functions to tame functions, with 
qualifications. 
 
iv. In set theory, we can extend big functions, preserving 
certain non first order properties. This requires such 
bigness that this is very wild. 
 
v. In recent years, rather elaborate set theoretic 
constructions have emerged allowing us to go from any 
structure to a proper elementary extension (even with 
saturation properties), set theoretically defined from that 
structure. The usual construction via a single ultrapower 
is not explicitly definable, requiring the choice of a 
single nonprincipal ultrafilter. All of this is very wild. 
 
vi. More speculatively, perhaps there is a relevant 
adaptation to functions of my recent Continuation Theory of 
finite sets, where finite functions get maximally continued 
within a countable space, with certain symmetries. (These 
provide clear finitary statements that can only be proved 
by using far more than the usual ZFC axioms for 
mathematics.)  
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How this all fits together is not so clear. 
 
I was asked to talk about results concerning the extension 
of real functions to Conway's surreal numbers. Positive and 
negative results of this kind are found in  
 
[CEF] O. Costin, P. Ehrlich, H. Friedman, A Conjecture of 
Conway, Kruskal and Norton, 
https://arxiv.org/abs/1505.02478. 
 
In [CEF], very natural explicitly given extensions of 
Ecalle's level one transseriable functions are lifted into 
the surreals with associated integration operators. These 
functions include "most functions occurring naturally in 
analysis" such as:  
 
semi-algebraic, restricted semi-analytic, analytic, and 
meromorphic functions, Borel summable functions and generic 
solutions to nonlinear systems of ODEs with a possible 
irregular singularity at infinity.  
 
They also include the named classical special functions 
such as Airy, Bessel, error functions Ei, Erf, Erfi, and 
Gamma, Painleve, among many others. See 
 
Écalle, Jean Six lectures on transseries, analysable 
functions and the construct- tive proof of Dulac's con-
jecture. Bifurcations and periodic orbits of vector fields 
(Montreal, PQ, 1992), 75–184, NATO Adv. Sci. Inst. Ser. C 
Math. Phys. Sci., 408, Kluwer Acad. Publ., Dordrecht, 1993. 
 
for an account of transseriable and Borel summable 
functions. 
 
In [CEF], it is also shown that other various classes are 
not explicitly extendable to surreals obeying very basic 
weak natural conditions. These negative results apply to 
very regular classes that were hoped to be extendable to 
surreals, such as the entire functions with decay at ±∞. 
 
These negative results are viewed to have dashed some hopes 
of Conway, Kruskal, and Norton. Furthermore, these negative 
results are very general, and do not use hardly any 
properties of the surreals. They are, however, formulated 
using fundamental notions from descriptive and general set 
theory. 
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I will present a more digestible simplified framework for 
casting these negative results here than in [CEF]. 
 
First I talk about function extension in a more general 
context, going back to 
 
[Fr] H. Friedman, Working with Nonstandard Models, in: 
Nonstandard Models of Arithmetic and Set Theory, American 
Mathematical Society, ed. Enayat and Kossak, 71-86, 2004. 
See 44. Working with Nonstandard Models, July 31, 2003, 
https://u.osu.edu/friedman.8/foundational-
adventures/downloadable-manuscripts/ 
This story is quite separate from the focus of this talk, 
but it has a common starting point. Given any infinite f:Ak 
→ A, there is a proper elementary extension g:Bk → B. 
 
There is a purely algebraic form of this that avoids use of 
predicate calculus.  
 
THEOREM 1. Every infinite f:Ak → A has a proper extension 
g:Bk → B containing the same finite h:Ck → B (h:Ck → C) up 
to isomorphism (not moving any element of A).  
 
There are several places we can take this. Here's a 
delicious one. 
 
THEOREM 2?. Every infinite f:Ak → A has a proper extension 
g:Bk → B containing the same countable h:Ck → B (h:Ck → C) 
up to isomorphism (not moving any element of A). Variants 
with countable replaced by "finitely generated" or "1-
generated". 
 
Well, this is easily refuted with A = ω. But look here! 
 
THEOREM 3. (ZFC) The following are equivalent.  
i. There exists A for which any of the statements in 
Theorem 2? hold, even for k = 2. 
ii. There exists a measurable cardinal.  
 
THEOREM 4. (ZFC) The following are equivalent.  
i. Any or all of the statements in Theorem 2? hold for A, 
even for just k = 2. 
ii. There is a countably additive 0,1 valued measure on 
℘(A) with singletons of measure 0 and A of measure 1. 
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iii. The cardinality of A is at least some measurable 
cardinal.  
We can try to take this to an extreme along certain lines. 
But we fail.  
 
THEOREM 5. (Major component is Kunen). For every A there 
exists f:A2 → A which is not isomorphic to any of its 
proper extensions or proper restrictions.  
 
The above is proved in ZFC, but it may be consistent with 
ZF. Note the formulations with extensions and restrictions 
are equivalent.  
 
The idea: let A is of least cardinality such that every f:A2 
→ A is isomorphic to a proper restriction. Show |A| is a 
strongly inaccessible cardinal. So take A to be the 
complete diagram of V(θ), θ strongly inaccessible. Now apply 
Kunen's inconsistency (every proper elementary embedding 
from V(α) into V(α) has cf(α) = ω or cf(α-1) = ω) to obtain 
a contradiction.  
 
Now let's come back down to earth.  
 
Even with  
 
*Every countably infinite f:Ak → A has a countably infinite 
proper extension g:Bk → B containing the same finite h:Ck → 
B (h:Ck → C) up to isomorphism* 
 
there is the question of whether for familiar f we can 
always find such a familiar g.  
 
For example, (Z,<,+) is an elementary substructure of 
(Z×Q,<,+), and Presburger functions extend tamely.  
 
However f:Z2 → Z, f(x,y) = x+y2, is quite different. No 
proper extension containing the same finite h:Ck → C up to 
isomorphism can be even recursively presented.  
 
Do tame functions have tame proper elementary extensions?  
 
It is clear that infinite o-minimal structures have 0-
minimal proper elementary extensions. This is immediate 
from the fact that being 0-minimal is first order.   
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If the 0-minimal structure is an expansion of an ordered 
Abelian group then the construction of an elementary 
extension is rather explicit. Use the ultrapower with 
definable functions and the nonprincipal filter of 
intervals (x,∞). The o-minimality guarantees that this 
filter is large enough for this purpose.  
 
The ordered Abelian group structure is used here for the 
existential quantifier step, proved by choice. Here we use 
choice for definable relations.  
 
So there remains a question of explicitness which can be 
formulated as follows. The above argument shows that every 
o-minimal expansion of an ordered Abelian group, with a 
recursive complete diagram, has a proper elementary 
extension with a recursive complete diagram. Is this true 
if we drop the ordered Abelian group hypothesis?   
 
In  
[DE] L. van den Dries and P. Ehrlich, Fields of surreal 
numbers and exponentiation, Fund. Math. 167 (2001) 173-188; 
erratum, ibid. 168 (2001) 295-297. 
 
the o-minimal real exponential field, with bounded real 
analytic functions, is elementarily extended to the field 
of surreals in a natural way.  
 
In [CEF], rich classes of real functions are naturally 
extended to surreals, along with their definite integrals, 
with some key analytic properties preserved. However, 
preservation of first order properties has not been 
verified.  
 
In particular, the functions with level one Ecalle-Borel 
summable transseries, and their definite integrals, are 
naturally extended to the surreals by a ZFC explicit 
construction - which up to any countable level of the 
surreals is, moreover, Borel. (Also the case in [DE] with 
exp and restricted analytic functions.)  
 
The [CEF] construction is "genetic" in the semiformal sense 
championed by Conway, and requires very "tight" asymptotic 
inequalities,  supported by theorems of Costin and Kruskal 
in hyperasymptotics. 
 
It should also be noted that these [CEF] functions include 
sine on ℜ, and thus the results do not stay within the 
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realm of Hardy fields.  
 
 
POSITIVITY SETS 
 
We begin with a core negative result that doesn't mention 
surreals or in fact any ordered field whatsoever - and not 
even functions.  
 
A positivity set is an S ⊆ {0,±1}N such that the following 
holds. No binary sum from S has a negative last nonzero 
term. No binary sum from {0,±1}N\S has a positive last 
nonzero term.  
 
(Here a binary sum from X is an a+b, a,b ∈ X).  
 
ZFDC is ZF with the axiom of choice replaced by the axiom 
of dependent choice.  
 
THEOREM 6. ZFC proves there is a positivity set. ZFDC 
proves the following. There is no Borel positivity set. No 
positivity set has the property of Baire. If there is a 
positivity set then there exists a set of reals without the 
property of Baire.  
 
Argue in ZFC. Take an ultrapower of the ordered ring of 
integers by a nonprincipal ultrafilter on ω, obtaining a 
nonstandard model of signed arithmetic, and choose any 
nonstandard γ > 0. Given f:N → {0,±1}, multiply by 
40,41,42,..., and take its image in the ultrapower, and add 
its first γ terms, in the sense of the ultrapower. Put f ∈ S 
iff this nonstandard length sum is positive. (We use N for 
the set of all nonnegative integers). 
 
Now argue in ZFDC. Suppose S is a positivity set with the 
property of Baire. Let α be a finite sequence of length n ≥ 
1 such that S is meager in X|α or comeager in X|α.  
 
In the first case, choose f,g ∈ X\S starting with α, 
continuing with f(n+1) = g(n+1) = -1, f(m) = -g(m), m ≥ n+2. 
(Use a homeomorphism argument). Then f+g has negative last 
nonzero term. In the second case, choose f,g ∈ S starting 
with α, continuing with f(n+1) =  g(n+1) = 1, and f(m) =  
-g(m), m ≥ n+2. (Use a homeomorphism argument). Then f+g has 
positive last nonzero term. QED  
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A set of reals without the property of Baire is quite a 
terrifying thing. We know from Solovay that these cannot be 
proved to exist in ZFDC.  
 
But since people generally accept the axiom of choice, 
another aspect of this, also due to Solovay, is very 
important. There is no explicit way to get a set of reals 
without the property of Baire. We apply this to positivity 
sets to obtain the following.  
 
THEOREM 7. ZFDC does not prove the existence of a 
positivity set. There is no definition which, provably in 
ZFC, defines a positivity set. This holds even with real 
parameters.  
 
So in a precise sense, positivity sets are inaccessible to 
normal mathematics.  
 
As we see below, this tells us that certain kinds of 
extensions of functions are also inaccessible to normal 
mathematics.  
 
EXTENDING REAL FUNCTIONS 
 
A real function is a function from ℜ to ℜ. Let W be a set 
of real functions.  
 
An additive extension of W consists of an ordered Abelian 
group G ⊇≠ ℜ, and operator ϕ:W → GG, where for all f,g,h ∈ 
W and x ∈ ℜ, 
i. ϕ(f) extends f. 
ii. f + g = h → ϕ(f) + ϕ(g) = ϕ(h). 
iii. f > 0 on [x,∞) → ϕ(f) > 0 on [x,∞) in G.   
 
It is easy to see that if W contains ≡0 and closed under -, 
then ϕ(≡0) = ≡0, ϕ(-f) = -ϕ(f), and f < 0 on [x,∞) → ϕ(f) < 
0 on [x,∞) in G.  
 
An absolutely convergent series of real functions is a 
series  
 
λ = λ0 + λ1 + ... 
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of real functions pointwise absolutely convergent. T(λ) 
consists of derived series, obtained via coefficients 0, 
±1,±2 on the λ's.  
 
Using ZFC, there exists an additive extension of T(λ) by an 
ultrapower. But this is not explicit. More about this 
later.  
 
THEOREM 8. (ZFDC) Let λ be absolutely convergent, where ∀n 
∃m (λn+1 > 4|λn| on [m,∞)). Assume T(λ) has an additive 
extension G,ϕ. Then ∃ a positivity set. Hence ∃ a set of 
real numbers without the property of Baire.  
 
Proof: Let λ,G,ϕ be as given. Fix γ ∈ G, γ > ℜ, and S = {f ∈ 
{0,±1}N: ϕ(∑f(n)λn)(γ) > 0}. We show S is a positivity set. 
The two parts are analogous. 
  
Suppose f,g ∈ S, f+g has last nonzero term < 0. Then 
∑(f+g)(n)λn ∈ T(f) is eventually < 0. Hence 
ϕ(∑(f+g)(n)λn)(γ) < 0. This contradicts ϕ(∑f(n)λn)(γ), 
ϕ(∑g(n)λn)(γ) > 0. QED 
 
We say that λ is brisk iff λ is absolutely convergent, where 
for all n there exists m such that λn+1 > 4|λn| on [m,∞). In 
the next section, we will discuss brisk λ where the T(λ) 
sharply decay at ±∞. This is particularly relevant to prior 
hopes for extending various real functions to the surreals.  
 
Here are two immediate Corollaries of Theorem 8.  
 
THEOREM 9. There is no Borel brisk λ with a Borel additive 
extension G,ϕ. It cannot be proved in ZFDC that there 
exists brisk λ for which T(λ) has an additive extension G,ϕ.  
 
THEOREM 10. There are no definitions which, provably in 
ZFC, define a brisk λ, an additive extension G,ϕ of T(λ), 
and a distinguished c > ℜ in G. This holds even if we allow 
real parameters in the definitions.  
 
Note that this c is used in the proof of Theorem 8. This 
cannot be simply removed, because of arbitrary ZFC verified 
definitions by Shelah and collaborators using iterated 
ultrapower constructions. See  
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V. Kanovei and S. Shelah. A definable nonstandard model of 
the reals. Journal of Symbolic Logic, 69(1):159–164, 2004. 
 
V. Kanovei, Michael Reeken, S. Shelah, Fully saturated 
extensions of standard universe, 
http://shelah.logic.at/files/E39.ps 
 
The nonstandard elementary extensions constructed in these 
two references necessarily cannot have explicitly defined 
nonstandard elements. This is in sharp contrast with, e.g., 
No, where the ω is an explicitly defined non Archimedean 
element. 
 
I.e., Theorem 10 applies where G is No or even natural 
parts of No, as they contain many explicitly defined c > ℜ. 
 
Perhaps you have noticed that we never used that ϕ(f) 
extends f. Thus what we are really talking about is more 
basic than extensions.  
 
Let W be a set of real functions. An additive evaluation of 
W consists of an ordered Abelian group G ⊇≠ ℜ, and 
functional ϕ:W → G, where for all f,g,h ∈ W and x ∈ ℜ, 
i. f + g = h → ϕ(f) + ϕ(g) = ϕ(h). 
ii. f > 0 on [x,∞) → ϕ(f) > 0.  
 
THEOREM 8'. (ZFDC) Let λ be brisk, with an additive 
extension G,ϕ. There is a positivity set. There is a set of 
real numbers without the property of Baire.  
  
THEOREM 9'. There is no Borel brisk λ with a Borel additive 
evaluation G,ϕ. It cannot be proved in ZFDC that there 
exists brisk λ for which T(λ) has an additive evaluation 
G,ϕ.  
 
THEOREM 10'. There are no definitions which, provably in 
ZFC, define a brisk λ and an additive evaluation G,ϕ of 
T(λ). This holds even if we allow real parameters in the 
definitions.  
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BRISK DECAY 
 
We use some particular brisk Γ = (hn)n≥0.  
 hn(x) = 0 for x ≤ n;  
 (x-n)/8 if n < x < n+1;  
 8n-x if x ≥ n+1.  
Clearly hn+1 > 4|hn| on [n+1,∞). Fix 0 ≤ m ≤ x < m+1. Then 
∑hn(x) = 8-x + 8-x+1 + ... + 8-x+m-1 + (x-m)/8 ≤ 8-m + ... + 8-1 
+ 1/8 < 1. So ∑hn(x) is pointwise absolutely convergent, Γ = 
(hn)n≥0 is brisk, and T(Γ) lies strictly between -1 and 1. 
Fix 0 ≤ m ≤ y < z ≤ m+2. hn(y)-hn(z) is 0 if n ≥ m+2; is 8n-
y-8n-z if n ≤ m-1; is in the difference set of {(y-m)/8,(z-
m)/8,0,8m-y,8m-z} if n ∈ {m,m+1}. This gives us a constant 
upper bound for ∑|hn(y)-hn(z)| as a function of m, and not 
of y,z. This suffices to establish that all elements of 
T(Γ) are continuous.  
 
Let f:ℜ → (0,∞) be continuous. A function trapped between 
-f and f corresponds to enforcing a decay condition. We say 
that λ is continuously f-brisk if and only if  
 
1. λ is a pointwise absolutely convergent series of real 
functions. 
2. ∀n ∃m such that λn+1 > 4|λn| on [m,∞). 
3. The functions in T(λ) are continuous and lie strictly 
between -f and f.  
 
LEMMA 11. For all continuous f:ℜ →(0,∞), there is a 
continuously f-brisk λ. 
 
Proof: Multiply Γ = (hn)n≥0 by the function min(f(x),e-|x|). 
QED 
  
THEOREM 12. (ZFDC) If there exists continuous f:ℜ → (0,∞) 
with an additive extension G,ϕ, of the continuous -f < g < 
f, then there is a set of reals without the property of 
Baire. The same holds for additive evaluations G,ϕ. 
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THEOREM 13. There is no continuous f:ℜ → (0,∞) with a 
Borel additive extension G,ϕ of the continuous -f < g < f. 
It cannot be proved in ZFDC that there exists a continuous 
f:ℜ → (0,∞) with an additive extension G,ϕ of the -f < g < 
f. The same holds for additive evaluations G,ϕ.  
 
THEOREM 14. There is no definition which, provably in ZFC, 
defines continuous f:ℜ → (0,∞), an additive extension G,ϕ 
of the continuous -f < g < f, and c > ℜ in G. The same for 
additive evaluations G,ϕ (without the c > ℜ).  
 
Real entire functions are entirely better than continuous 
functions.  
 
THEOREM 15. (O. Costin) For all continuous f:ℜ →(0,∞), 
there exists an entirely f-brisk λ. I.e., where the elements 
of T(λ) are entire. 
 
THEOREM 16. Theorems 12-14 hold with continuous f-brisk 
replaced by entirely f-brisk.  


