
1

LECTURE NOTES ON TERM REWRITING AND
COMPUTATIONAL COMPLEXITY

by
Harvey M. Friedman

Ohio State University
friedman@math.ohio-state.edu

http://www.math.ohio-state.edu/~friedman/
November 7, 2001

Abstract. The main powerful method for establishing
termination of term rewriting systems was discovered by
Nachum Dershowitz through the introduction of certain natural
well founded orderings (lexicographic path orderings). This
leads to natural decision problems which may be of the
highest computational complexity of any decidable problems
appearing in a natural established computer science context.

1. TERM REWRITING.

 A signature S is a finite set of function symbols (arities ≥
0). V is the set of variables x1,x2,... . T(S,V) is the set of
all terms using elements of S » V.

 T(S) is the restriction to closed terms (i.e., with no
variables).

 A rewrite rule in T(S,V) is an expression

 l Æ r

 where l,r Œ T(S,V), l is not a variable, and every variable
in r is a variable in l.

 These two restrictions are from [BN], p. 61. Only the second
restriction is important for us. We write

 s Æ t by l Æ r

 iff s,t Œ T(S,V) and there is a substitution of variables in
l by terms in T(S,V) which converts l to s and r to t.

 A term rewriting system (trs) is a pair R = (R,S), where R is
a finite set of rewrite rules in T(S,V). Term rewriting
systems are implemented as follows.

2

 We write s Æ t by R iff s Æ t by some l Æ r in R.

 An R-derivation is a nonempty sequence t1,t2,... of length 1 £
n £ • such that for all 1 £ i £ n-1, ti Æ ti+1 by R.

 THEOREM 1.1. Let R be a trs. All variables occurring in any
R-derivation already occur in its first term. For all n ≥ 1
and s Œ T(S,V), there are finitely many R-derivations from s
of length £ n.

 This depends heavily on the convention that, in each rewrite
rule, all right variables are left variables.

2. ORDERED TERM REWRITING.

 Ordered term rewriting is discussed in [BN], 267-268.

 An ordered term rewriting system (otrs) is a triple (R,S,<),
where (R,S) is a term rewriting system and < is a strict
ordering on T(S,V).

 An (R,S,<)-derivation is an R-derivation which is strictly
decreasing under <.

 Note that the presence of < only affects the allowable
derivations. It does not have any affect on R, which can be
any finite set of rewrite rules.

 A well founded term rewriting system (wftrs) is an otrs whose
< is well founded (no infinite strictly decreasing
sequences).

 As a consequence, every (R,<)-derivation is finite. In fact,
more is true.

 THEOREM 2.1. In any wftrs there are finitely many derivations
starting with any given term.

 Proof: Apply the fundamental fact that an infinite finitely
branching tree has an infinite path. QED

3. TERMINATION FUNCTIONS. DERIVATION PROBLEMS.

3

N = the set of all nonnegative integers. Z+ = the set of
positive integers. The size of a term, #(t), is the total
number of occurrences of functions and variables.

Let (R,S,<) be a wftrs. The termination function of (R,S,<)
is TF(R,S,<):Z+ Æ Z+ where TF(R,S,<)(n) is the longest length
of an (R,S,<)-derivation that starts with a term of size at
most n.

The derivation problem for (R,S,<) is to decide if there
exists an (R,S,<)-derivation from a one given term to
another.

THEOREM 3.1. Let (R,S,<) be a wftrs, where < is recursive.
Then the termination function and the derivation problem are
recursive.

Let < be a strict ordering on T(S,V). The termination
function of < is TF(<):Z+ Æ Z+ where TF(<)(n) is the longest
length of a sequence t0 > ... > tr such that for all 0 £ i £
r, #(ti) £ n+i.

THEOREM 3.2. Let < be a well founded strict ordering on
T(S,V), where s > t implies every variable in t is a variable
in s. Then TF(<) is everywhere defined.

NOTE: We have both termination functions of well founded term
rewriting systems, and termination functions of well founded
orderings of terms.

4. LEXICOGRAPHIC PATH ORDERINGS.

LPOs are discussed in [BN], 118-122.

Let S be given, and let < be a strict ordering on S. We
define <(S,V) as the unique strict ordering on T(S,V)
satisfying the following condition.

Let s,t Œ T(S,V). s >(S,V) t if and only if t Œ V appears in
s and s ≠ t, or s,t are not variables and the following
holds.

Let s = f(s1,...,sm), t = g(t1,...,tn).

i) There exists i such that si ≥(S,V) t; or
ii) f > g and for all j, s ≥(S,V) tj; or

4

iii) f = g and for all j, s >(S,V) tj, and (s1,…,sm) >(S,V)
(t1,...,tn) under the lexicographic extension of >(S,V) to
T(S,V)m = T(S,V)n.

This is a recursive definition of a strict order. It has low
computational complexity.

We write <(S) for the restriction of <(Â,V) to T(S); i.e., to
the closed terms.

These important orderings were introduced by Nachum
Dershowitz in order to give a unified treatment of
termination in term rewriting systems.

THEOREM 4.1. For all strict well founded orderings < on S,
<(S,V) is a strict well founded ordering. <(S) is a well
ordering iff < on S is a linear ordering.

Dershowitz proved this using an important combinatorial
theorem of J.B. Kruskal in [Kr60]. By far the simplest proof
of this theorem is in [NW63]. Here is one of its many
variants.

KRUSKAL’S TREE THEOREM. Let T1,T2,... be an infinite sequence
of finite trees with left/right structure, where the vertices
are labeled from a finite set. Then there is a label, inf,
and structure preserving embedding from some tree into a
later one.

The idea of the proof of Theorem 4.1 is this. If s >(S,V) t
then every variable in t is present in s. So to prove well
foundedness of <(S,V), we can pretend that V is finite.

Thus we can view the terms in T(S,V) as finite trees with
left/right structure where the vertices are labeled from the
finite set S » V. Suppose h is a label, inf, structure pre-
serving embedding from term s into term t. Then s £(S,V) t,
and hence ÿs >(S,V) t.

Kruskal’s tree theorem had earlier been proof theoretically
analyzed in the 1980’s from the point of view of logic, and
shown to be deeply connected with proof theory and fast
growing functions. See [Fr01].

In fact, the ordinals of the lpo’s correspond exactly to the
ordinals associated with Kruskal’s theorem.

5

Our work extends this correspondence to lpo term rewriting.
Specifically, we establish the correspondence between lpo
term rewriting and recursion on proof theoretic ordinals
associated with Kruskal’s theorem.

Since s >(S,V) t implies every variable in t is a variable in
s, we see that <(S,V) has an everywhere defined termination
function.

The idea is that

i) the termination functions of lpo’s grow extremely fast, as
fast as the growth rates for recursion on large proof
theoretic ordinals;

ii) the termination functions of lpo term rewriting systems
grow equally fast as termination functions of lpo’s;

iii) this fast growth makes its way into the computational
complexity of derivation problems for the lpo term rewriting
systems.

5. LPO TERM REWRITING THEOREMS.

In lpo term rewriting, we work with (R,S,<(S,V)) or
(R,S,<(S)), where S is a (finite) signature, R is a finite
set of rewrite rules for T(S,V), < is a strict ordering on S,
<(S,V) is the lpo on T(S,V) induced by <, and <(S) is the lpo
on T(S) induced by <.

THEOREM 5.1. For all otrs (R,S,<(S,V)) there exists <(S*)
such that "n ≥ 1, TF(R, <(S,V))(n) < TF(<(S*))(n).

THEOREM 5.2. "(S,<) there exists an otrs (R,S*, <*(S*)) such
that "n ≥ 1, TF(<(S))(n) < TF(R,S*,<(S*))(n).

THEOREM 5.3. For all (S,<) there exists <(S*) such that the
derivation problem for any otrs (R,S,<(S,V)) is in time
complexity O(TF(<(S*)).

THEOREM 5.4. "(S,<) $ an otrs (R,S*,<(S*)) such that the
derivation problem for (R,S*,<(S*)) is not in time complexity
O(TF(<(S)).

6

We give an idea of the proof of Theorem 5.2, which is the
heart of the matter. This shows how enormous integers come up
in lpo term rewriting.

Let t0,...,tr be strictly descending in <(S), where each #(ti)
£ n+i and n ≥ 1. We want to find a derivation in an lpo trs
that is just as long. The lpo trs must depend only on (S,<)
and start with a term of size £ n.

It will be convenient to assume n ≥ 2, the case n = 1 being
handled by a simple modification (in fact, simplification).
Consider the following long sequence of closed terms.

a1(n-2)*
a2((n-1)*)
...
a13((n+10)*)

J(b,G(n*,0,0,0,0),0,0)
...
J(b,G(0,0,0,0,0),t0,n*)

J(t0,G(n*,0,0,0,0),0,n*)
...
J(t0,G(0,0,0,0,0),t1,n*)

J(t1,G((n+1)*,0,0,0,0),0,(n+1)*)
...
J(t1,G(0,0,0,0,0),t2,(n+1)*)

J(t2,G((n+2)*,0,0,0,0),0,(n+2)*)
...
J(t2,G(0,0,0,0,0),t3,(n+2)*)

J(t2,G((n+3)*,0,0,0,0),0,(n+3)*)

...

J(tr,G((n+r)*,0,0,0,0),0,(n+r)*)
...
J(tr,G(0,0,0,0,0),tr,(n+r)*)

Here J,G,S,0,a1,...,a13,b are new, and p* = S...S0, where
there are p occurrences of S. These are, respectively, of
arities 4,5,1,0,1,...,1. Take 0 < S and f < b < a13 < a12 <
... < a1 where f Œ S » {0,S,G,J}.

7

Consider the following segment.

a1(n-2)*
a2((n-1)*)
...
a13((n+10)*)

Clearly this is strictly descending and starts with a term of
complexity n. It is supported by the rules

ai(x) Æ aj(S(x)).

Consider the step

a13((n+10)*)
J(b,G(n*,0,0,0,0),0,0)

This step is supported by the rule

a13(SSSSSSSSSS(x)) Æ J(b,G(x,0,0,0),0,0).

Consider the segment

J(b,G(n*,0,0,0,0),0,0)
...
J(b,G(0,0,0,0,0),t0,n*)

In the third argument, we go from 0 to t0 by a buildup of
terms procedure that is only exponential in #(t0)= n. This
raises the third argument, and so has to be compensated by
lowering the second argument. However, the obvious lowering
of the second argument takes only n steps, which is too
quick. But it is easy to use the other arguments of G to
greatly slow this down, as in primitive recursion.

Consider the segments

J(ti,G((n+i)*,0,0,0,0),0,(n+i)*)
...
J(ti,G(0,0,0,0,0),ti+1,(n+i)*)

This is handled in the same way. The rules used to support
these segments have the form

J(x,G(_,_,_,_,_),_,y) Æ J(x,G(_,_,_,_,_),_,y),

8

where x,y are variables, the blanks inside G are appropriate
terms driving a simple primitive recursion of suitably
exponential length, and the blanks outside G are appropriate
terms supporting the buildup of closed terms in original
signature S.

Consider the following steps.

J(ti,G(0,0,0,0,0),ti+1,(n+i)*)
J(ti+1,G((n+i+1)*,0,0,0,0),0,(n+i+1)*)

The step is supported by the rule

J(x,G(y,0,0,0,0),z,w) Æ J(z,G(S(w),0,0,0,0),0,S(w)).

Finally, consider the following step.

J(b,G(0,0,0,0,0),t0,n*)

J(t0,G(n*,0,0,0,0),0,n*)

This step is supported by the rule

J(b,G(0,0,0,0,0),y,z) Æ J(b,G(z,0,0,0,0),0,z).

6. ACKERMANN FUNCTION.

Let f:Z+ Æ Z+ be strictly increasing. Let f’:Z+ Æ Z+ be given
by f’(n) = f...f(1), where there are n f’s. Define f1(n) = 2n,
fk+1 = fk’. Write A(k,n) = fk(n), and A(k) = Ak(k). A(k,n) has
tremendous growth, even for small k. E.g.,

A(3,5) = 265,536. A(4,3) = 65,536. A(4,4) = E*(65,536). And
A(4,5) is E*(E*(65,536)).

Here E*(n) is an exponential stack of n 2’s. A(5,5) is
incomprehensibly large.

We can define A(k,n) as a double recursion, by A(k,n) = if k
= 1 then 2n else if n = 1 then 2 else A(k-1,A(k,n-1)).

Note that values of A at only pairs lexicographically lower
than (k,n) are called.

7. MULTIRECURSION.

9

We formally introduce multirecursion, which we prefer to do
on w = {0,1,...}.

A single step multirecursion is an equation

f(x1,...,xk) = t,

where t is a term using the distinct variables x1,...,xk, the
k-ary function symbol f<x1,...,xk, the successor function S, the
constant 0, and if then else.

The idea is that f<x1,...,xk is interpreted as

f<x1,...,xk(y1,...,yk) = if (y1,...,yk) <lex (x1,...,xk) then
f(y1,...,yk) else 0.

Obviously there is a unique solution f:wk Æ w to this
equation.

A multirecursion is a nonempty finite sequence of equations

f1(x1,...,xk1) = t1
f2(x1,...,xk2) = t2
...
fr(x1,...,xkr) = tr,

where each ti uses at most x1,...,xki, f1,...,fi-1, the
successor function S, the constant 0, if then else, and
fi<x1,...,x_ki.

Here again fi<x1,...,x_ki is interpreted as

fi<x1,...,x_ki(y1,...,yki) = if (y1,...,yki) <lex (x1,...,xki) then
fi(y1,...,yki) else 0.

Let (w,<) be a well ordering. We can define a multirecursion
over (w,<) again as a nonempty finite sequence of equations

f1(x1,...,xk1) = t1
f2(x1,...,xk2) = t2
...
fr(x1,...,xkr) = tr,

10

where each ti uses at most x1,...,xki,f1,...,fi-1, the successor
function S, the constant 0, if then else, <*, and
fi<*x1,...,x_ki.

Here fi<*x1,...,x_ki is interpreted as

fi<x1,...,x_ki(y1,...,yki) = if (y1,...,yki) <*lex (x1,...,xki) then
fi(y1,...,yki) else 0,

where <*lex is the lexicographic product of k copies of <*.

This definition is appropriate in the case where <* is itself
multirecursive.

Thus we speak of a multirecursive well ordering <*.

8. MULTIRECURSION AND TERMINATION FUNCTIONS.

Under reasonable hypotheses, multirecursion on initial
segments of a well ordering and the termination function of
its initial segments are intertwined.

9. UPWARDLY GENERATED ORDINALS.

Let a be an ordinal. Let f:ak Æ a. We say that f is upwardly
increasing if and only if

for all a1,…,ak,b1,…,bk < a, if each ai £ bi, then a1,…,ak £
f(a1,…,ak) £ f(b1,…,bk).

We say that a is upwardly generated iff there exist finitely
many upwardly increasing functions f1,…,fk from a into a, of
various arities ≥ 0, which generate a. Here we allow arity 0.

The sup of all upwardly generated ordinals is the important
recursive ordinal l.

In fact, we can perform a more general construction. Let
(D,<*) be a linear ordering. Let f:Dk Æ D.

We say that f is upwardly increasing iff for all
x1,…,xk,y1,…,yk Œ D, if each xi £ yi, then x1,…,xk £ f(x1,…,xk)
£ f(y1,…,yk).

We say that (D,<*) is upwardly generated iff there exist
finitely many upwardly in-creasing functions f1,…,fk from D

11

into D, of various arities ≥ 0, which generate D. Here we
allow arity 0.

It can be proved that every upwardly generated (D,<*) is a
well ordering, and their sup is the same ordinal l.

10. THE ORDINAL l.

Let n ≥ 1. We define Fn:w1
n Æ w1 as follows.

Let a1,…,an < w1.

Take Fn(a1,…,an) to be the least b such < w1 such that

i) b is a power of w;
ii) for all g1,…,gn < b, if (g1,…,gn) <lex (a1,…,an) then

Fn(g1,…,gn) < b.

THEOREM 10.1. For n ≥ 1, let ln be the least ordinal such that
Fn:ln Æ ln. Then ln is upwardly generated by Fn,0,+.

In fact, one can effectively compare terms in Fn,0,+.

The natural algorithm is of low computational complexity.

Any ordinal < ln may be represented by different terms, but by
exactly one normal term. The normal terms over Fn,0,+ are the
terms generated by the clauses:

a) 0 is a normal term;
b) if k ≥ 2 and t1,…,tk are normal terms each of which start

with Fn, and t1 ≥ … ≥ tk, then t1 + … + tk is a normal term;
c) if t1,…,tn are normal terms then Fn(t1,…,tn) is a normal

term.

One can effectively place any term in normal form (low
complexity).

11. l AND THE LEXICOGRAPHIC PATH ORDERINGS.

The lengths of the total lpo’s are cofinal in l. There are
nice embeddings of the total lpo’s into the ln, and from the
ln into total lpo’s. The embeddings are sufficiently good as
to allow us to show that the termination functions of the
total lpo’s and the termination functions of the ln are
intertwined.

12

12. COMPLEXITY OF LPO TERM REWRITING.

We can now read off that lpo term rewriting corresponds
quantitatively and complexity-wise to recursion on the
ordinals ln.

13. PROOF THEORETIC FORMULATIONS.

P1
2 bar induction formulations. Provably recursive functions.

Independence results.

REFERENCES

 [BN] Franz Baader & Tobias Nipkow, Term Rewriting and All
That, Cambridge Univ. Press, 1998.

 [Fr01] Internal Finite Tree Embeddings, Reflection on the
Foundations of Mathematics: Essays in honor of Solomon
Feferman, ed. Sieg, Sommer, Talcott, Lecutre Notes in Logic,
volume 15, Association for Symbolic Logic, 2001.

[Kr60] J.B. Kruskal, Well-quasi-ordering, the tree theorem,
and Vazsonyi's conjecture, Trans. Amer. Math. Soc. 95 (1960),
210-225.

[NW63] C. St. J. A. Nash-Willliams, On well-quasi-ordering
finite trees, Proc. Cambridge Phil. Soc. 59 (1963), 833-835.

