
ARE THE USUAL 
AXIOMS SUFFICIENT?

by
Harvey M. Friedman

Distinguished University Professor
Mathematics, Philosophy, Computer 

Science
Ohio State University

Pat Suppes’ 90th Birthday
Stanford, March 10, 2012

U
n
i
v



I am deeply honored to be speaking at Pat’s 90th 
birthday celebration. 

Pat was Chairman of the Philosophy Department when I was 
hired as Assistant Professor of Philosophy right after 
my Ph.D. in Mathematics from MIT, way back in September, 
1967. 

Pat Suppes is arguably the greatest polymath on the 
planet today. 

I am going to talk a bit about recent advances in a 
longstanding project of mine in the foundations of 
mathematics. 

Foundations of mathematics is just one of countless 
areas in which Pat has made substantial contributions.

After writing two well received textbooks in 1957 and 
1960, Pat’s main interest in foundations of mathematics 
went into the direction of the foundations of 
mathematics as used in the sciences. There is a focus on 
the foundations of finitism, geometry, and infinitesimal 
reasoning.

   



PAPERS BY PAT IN THE 
FOUNDATIONS OF MATHEMATICS

(1957) Introduction to Logic. 

(1960) Axiomatic set theory. 

With N. Moler. (1968) Quantifier-free axioms for 
constructive plane geometry. (1988) 

(1988) Philosophical implications of Tarski's work.

With R. Chuaqui. (1990) An equational deductive system 
for the differential and integral calculus. 

With R. Chuaqui. (1993) A finitarily consistent free-
variable positive fragment of infinitesimal analysis. 

With R. Chuaqui. (1995) Free-variable axiomatic 
foundations of infinitesimal analysis: A fragment with 
finitary consistency proof. 

With R. Sommer. (1996) Finite models of elementary 
recursive nonstandard analysis. 

With R. Sommer. (1997) Dispensing with the continuum.

Of course, there are many more contributions to other 
aspects of logic, by Pat. 



THE USUAL AXIOMS FOR MATHEMATICS

I doubt if many of you can recite the commonly accepted 
axioms for mathematics. But this is not a problem for 
what I want to say. 

The usual setup is ZFC = Zermelo Frankel set theory with 
the Axiom of Choice.

The variables range over sets, with the single primitive 
relation of membership (written ∈). Equality is also 
usually taken as primitive. 

ZFC consists of intelligible axioms about sets, together 
with the usual axioms and rules of first order predicate 
calculus with equality. 

ZFC is gigantic overkill for the support of mathematical 
proof. ZFC is so successful as a general foundation for 
mathematics, that mathematicians today generally have 
little idea what it is - but are at least aware of its 
existence. 

                                                                                                                                            



THE CLASSICAL LIMITATIONS OF ZFC

Yet ZFC does have certain limitations. 

An obvious issue concerning ZFC - or, for that matter, 
any proposed system for supporting mathematical proofs - 
is whether it supports a contradiction. 

Prima facie, any system that supports a contradiction is 
worthless as a foundation for mathematics. 

So we want to be certain that ZFC is consistent (free of 
contradiction). 

Form work of Kurt Gödel, we have the following classical 
limitation of ZFC:

either ZFC does not prove that ZFC is consistent, or
ZFC is not consistent.

The generally accepted view is that the former holds; 
not the latter. 

Furthermore, Gödel’s work shows that this situation 
cannot be repaired by modifying ZFC. 



THE CLASSICAL LIMITATIONS OF ZFC

We have learned to accept this first limitation of ZFC:

ZFC does not prove that ZFC is free of contradiction.

However, this does not reveal any limitation of ZFC for 
any “normal mathematical purpose”. 

There is a crucial problem in abstract set theoretic 
mathematics called the continuum hypothesis (CH):

every infinite set of real numbers is in one-one 
correspondence with the integers or the real numbers. 

Gödel (1930s) and Cohen (1960s) established the 
following limitation of ZFC:

ZFC can neither prove nor refute CH.

The Gödel/Cohen development sparked a substantial 
development whereby various further limitations of ZFC 
for abstract set theoretic mathematics were established.



NEW LIMITATIONS OF ZFC

What do we mean by “abstract set theoretic mathematics?”

The key feature of abstract set theoretic mathematics is 
that extremely general uncountable sets are involved. 

In the continuum hypothesis (CH), arbitrary infinite 
sets of real numbers are involved. 

Examination of mathematics reveals that the “reasonable” 
uncountable sets are Borel measurable subsets of 
complete separable metric spaces. Even this is far more 
than what is encountered for normal purposes. 

What happens if we are to give a more reasonably 
concrete formulation of CH?

BOREL CH. Every infinite Borel set of reals is in Borel 
one-one correspondence with the integers or the real 
numbers.

Borel CH is a well known theorem of ZFC from the Polish 
school. The independence from ZFC is removed in this 
way.



NEW LIMITATIONS OF ZFC

The New Limitations of ZFC are now much more concrete 
than Borel measurable sets and functions on the reals. 

The New Limitations involve only rather concrete 
discrete and even finite mathematics. 

CAUTION: It is doubtful if any discrete/finite 
mathematical problems that have already arisen are 
neither provable nor refutable from ZFC. 

But we claim that the new examples are simple and 
natural and strategic enough to 

1. conform to existing standards for normal mathematical 
investigations of a concrete nature.

2. provide interesting and valued concrete mathematical 
information.

I am working with leading core mathematicians concerning 
strategy for integrating the examples further into 
current concrete mathematical culture.



INVARIANCE IN SETS OF RATIONAL 
VECTORS

I present a recent example of a simple concrete 
statement neither provable nor refutable in ZFC.

In fact, the statement are provable using certain far 
reaching and well studied extensions of the ZFC axioms - 
but not in ZFC alone. 

Let Q be the set of rationals. We begin with the 
following well known statement.

EVERY SET OF ORDERED PAIRS CONTAINS A MAXIMAL SQUARE. 

Here a maximal square is a subset A × A which is not 
properly contained in any subset B × B. 

In the countable case, this is proved by a 
straightforward greedy construction. 

We are moving towards 

EVERY INVARIANT SET OF ORDERED PAIRS CONTAINS AN 
INVARIANT’ MAXIMAL SQUARE. 



INVARIANCE IN SETS OF RATIONAL 
VECTORS

We need to have some structure for invariance. Let Q be 
the set of all rationals, and Z+ be the set of all 
postitive integers.

EVERY INVARIANT SUBSET OF Q2k CONTAINS AN INVARIANT’ 
MAXIMAL SQUARE. 

We say that x,y ∈ Qk are order equivalent if and only if 
for all i,j, xi < xj ⇔ yi < yj. 
 Ex: (3,-1/2,2) and (2,1,3/2) are order equivalent. 

Let x ∈ Qk. Z+↑(x) results from adding 1 to all 
coordinates greater than all coordinates outside Z+. 

 Ex: Z+↑(1,3/2,3,5) = (1,3/2,4,6). 

S ⊆ Qk is order invariant iff for all order equivalent 
x,y ∈ Qk, x ∈ S ⇒ y ∈ S. 

S ⊆ Qk is completely Z+↑ invariant iff for all x ∈ Qk, x 

∈ S ⇔ Z+↑(x) ∈ S. 



INVARIANCE IN SETS OF RATIONAL 
VECTORS

We have proved the following:

EVERY ORDER INVARIANT SUBSET OF Q2k CONTAINS A COMPLETELY 

Z+↑ INVARIANT MAXIMAL SQUARE. 

but only by using far more than ZFC. We don’t know if 
ZFC suffices. 

However, we can use Q[0,16]32 instead of Q2k, where we 

restrict to [0,16]. Z+↑ is applied only to Q[0,16)32.  

We have proved 

EVERY ORDER INVARIANT SUBSET OF Q[0,16]32 CONTAINS A 

COMPLETELY Z+↑ INVARIANT MAXIMAL SQUARE. 

using far more than ZFC, and we know that ZFC does not 
suffice. 



INVARIANCE IN SETS OF RATIONAL 
VECTORS

EVERY ORDER INVARIANT SUBSET OF Q[0,16]32 CONTAINS A 

COMPLETELY Z+↑ INVARIANT MAXIMAL SQUARE. 

This statement is very concrete in the following senses. 

First of all, it is an easy exercise to construct a 
finite set of sentences in predicate calculus such that 
the statement is outright equivalent to their 
satisfiability. By Gödel’s completeness theorem, the 
statement is therefore equivalent to the formal 
consistency of a finite set of sentences in predicate 
calculus. 

Secondly, there is a nondeterministic algorithm, 
straightforwardly associated with the statement, such 
that the statement holds if and only if this algorithm 
can be run for infinitely many steps without reaching an 
obstruction. 

It can also be shown that the statement holds if and 
only if this algorithm can be run for any given finite 
number of steps, without reaching an obstruction.  



FURTHER EXAMPLES

There are some further examples of statements neither 
provable nor refutable from ZFC which are a little more 
involved, and live entirely in initial segments of the 
natural numbers. These are explicitly finite. 



WHAT IS BEING USED BEYOND ZFC?

Just beyond ZFC is a strongly inaccessible cardinal, 
which corresponds to Grothendieck universes (big kind).

κ is a strong limit cardinal if and only if for all κ’ < 
κ, 2κ’ < κ. 

κ is a strongly inaccessible cardinal if and only if 

i. κ is a strong limit cardinal.
ii. κ is not the supremum of a set of cardinals < κ of 
cardinality < κ.
iii. κ is uncountable.



WHAT IS BEING USED BEYOND ZFC?

The ones used (and needed) here are a lot bigger than 
the first strongly inaccessible cardinal. 

We think of each cardinal as an ordinal. Each ordinal is 
the set of all smaller ordinals. 

Let κ be an infinite cardinal. We say that A ⊆ κ is 
closed if and only if the sup of any nonempty bounded 
subset of A without a maximum element, is an element of 
A.

We say that A ⊆ κ is stationary if and only if A meets 
every closed unbounded subset of κ.

We say that κ has the k-SRP if and only if for any 
partition of the unordered k-tuples from κ into two 
pieces, there is a stationary subset of k whose 
unordered k-tuples all lie in one piece.

We use 

for all 1 ≤ k < ∞, some cardinal has the k-SRP.


