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The Inevitability of Logical Strength: strict reverse mathematics. 
Logic Colloquium '06, ASL. October, 2009. Cambridge University Press. 

An extreme kind of logic skeptic claims that "the present formal 
systems used for the foundations of mathematics are artificially 
strong, thereby causing unnecessary headaches such as the Gödel 
incompleteness phenomena". The skeptic continues by claiming that 
"logician's systems always contain overly general assertions, and/or 
assertions about overly general notions, that are not used in any 
significant way in normal mathematics. For example, induction for all 
statements, or even all statements of certain restricted forms, is 
far too general - mathematicians only use induction for natural 
statements that actually arise. If logicians would tailor their 
formal systems to conform to the naturalness of normal mathematics, 
then various logical difficulties would disappear, and the story of 
the foundations of mathematics would look radically different than it 
does today. In particular, it should be possible to give a convincing 
model of actual mathematical practice that can be proved to be free 
of contradiction using methods that lie within what Hilbert had in 
mind in connection with his program”. Here we present some specific 
results in the direction of  refuting this point of view, and 
introduce the Strict Reverse Mathematics (SRM) program. 

1. Can we get logical strength out of strictly mathematical statements?
2. Can we build appropriate base theories out of strictly mathematical statements?
3. Can we give strictly mathematical versions of my five most basic RM systems?



I basically tried to do this in the unpublished but widely circulated 
papers leading up to my founding papers of the RM enterprise - the 
publication of the ICM address given in 1974 and the two JSL 
abstracts of 1976.

These earlier papers were quite elaborate and evangelical. But the 
development was premature. They referred to some previous 
developments (reversals of mine over ACA) that date back to 1969. 

I had realized after writing these unpublished papers that matters 
were not in concise and attractive enough form to be founding a 
viable subject. 

So I consolidated matters and wrote those founding papers - the ICM 
paper used sets, as is common now, but the ASL abstracts used the 
most mathematical axiomatizations I could formulate at the time. 
 More specifically, the most commonly used forms are logically 
equivalent to both of these early formulations (we now most commonly 
use sets as opposed to functions). They are considerably less 
mathematical than my original formulations.

I have recently come back to this issue - and call it STRICT REVERSE 
MATHEMATICS. I think that some amazing things await us here.

CURRENTLY BIGGEST OPEN PROBLEM IN SRM: 

Develop SRM to a point that it competes with RM!    



EXTENDING REVERSE MATHEMATICS TO THE 
UNCOUNTABLE - AND OTHER CONTEXTS

There are issues involved in the extension of RM to the uncountable. 
Originating with my original founding papers, RM does treat real 
analysis is a reasonably convincing way through coding back into the 
countable. 

In the unpublished founding papers, I took the issue seriously from 
the point of view of SRM, taking reals and infinite sequences of 
reals (and integers) as primitive. The idea even back then was to 
operate in a coding free fashion. 

This definitely needs to be revisited carefully, although here I will 
not take this aspect of SRM up - but rather some other important 
aspects. 

For each area of mathematics X, there will be SRM of X. The basic 
concepts of X will be taken as primitive, and purely natural 
mathematical statements from the practice of X will be used as axioms 
to be analyzed. 

SRM (SRM of X’s) is a far larger and likely far more delicate 
enterprise, technically, than RM. The foundational significance is 
rather apparent. The founding papers were scanned and placed on my 
website a few years ago. 



FSTZ = finite sets of integers. FSQZ = finite sequences of integers.
integers, finite sets of integers  integers, finite seqs of integers

Well behaved interpretation of FSQZ in FSTZ in PFA (bounded 
arithmetic, IΣ0). Identity on the nonnegative integers. 

1. Linearly ordered integral domain axioms. 
2. Finite interval. [x,y] exists. 
3. Boolean difference. A\B = {x ∈ A: x ∉ B} exists. 
4. Set addition. A+B = {x+y: x ∈ A ∧ y ∈ B} exists. 
5. Set multiplication. A⋅B = {x⋅y: x ∈ A ∧ y ∈ B} exists. 
6. Least element. Every nonempty set has a least element. 

FSQZ - integers and finite sequences of integers. ring operations, <, 
length of sequence α, i-th term of sequence α (written α[i]).

1. Linearly ordered integral domain axioms. 
2. lth(α) ≥ 0. 
3. val(α,n)↓ ⇔ 1 ≤ n ≤ lth(α). 
4. The finite sequence (0,...,n) exists. 
5. lth(α) = lth(β) → -α,α+β,α⋅β exist. 
6. The concatenation of α,β exists. 
7. For all n ≥ 1, the concatenation of α, n times, exists. 
8. There is a finite sequence enumerating the terms of α 
that are not terms of β. 
9. Every nonempty finite sequence has a least term. 



FSTZ
1. Linearly ordered integral domain axioms. 
2. Finite interval. [x,y] exists. 
3. Boolean difference. A\B = {x ∈ A: x ∉ B} exists. 
4. Set addition. A+B = {x+y: x ∈ A ∧ x ∈ B} exists. 
5. Set multiplication. A⋅B = {x⋅y: x ∈ A ∧ x ∈ B} exists. 
6. Least element. Every nonempty set has a least element. 

H. Friedman, The Inevitability of Logical Strength: strict reverse 
mathematics, Logic Colloquium ‘06, ASL, October, 2009.

THEOREM. FSTZ is a weak second order version of bounded arithmetic.
 But how to get the scheme of bounded induction?
LEMMA 8.1. 
i) ¬(x < y ∧ y < x+1); 
ii) (a,b),[a,b),(a,b] exist; 
iii) ∅,{x} exists; 
iv) x⋅A = {x⋅y: y ∈ A} exists; 
v) every nonempty set has a greatest element; 
vi) every set is included in some interval [a,b]; 
vii) sets are closed under pairwise union and pairwise 
intersection; 
viii) for standard n ≥ 0, {x1,...,xn} exists; 
ix) the set of all positive (negative, nonnegative, 
nonpositive) elements of any set exists. 
 LEMMA 8.2. Let d ≥ 1 and x be an integer. There exists 
unique q,r such that x = dq + r and 0 ≤ r < d. 



LEMMA 8.3. Let k ≥ 0. The following is provable in FSTZ. For 
all r ≥ 2, the elements of [0,rk+1) have unique 
representations of the form n0r0 + ... + nkrk, where each ni 
lies in [0,r). If n0r0 + ... + nkrk = m0r0 + ... + mkrk and 
each ni lies in (-r/2,r/2), then each ni = mi.
 THINK k standard, r general.
LEMMA 8.4. For all r > 1, S[r] = {n0r0 + n1r2 + ... + nir2i + 
... + nkr2k: n0,...,nk ∈ [0,r)} exists. Every element of S[r] 
is uniquely written in the displayed form.

LEMMA 8.5. For all r > 1 and i ∈ [0,k], {x ∈ S[r]: x[i] = 
0} and {x ∈ S[r]: x[i] = 1} exist. 

LEMMA 8.6. Let r > 1 and i,j,p ∈ [0,k]. Then {x ∈ S[r]: 
x[i] + x[j] = x[p]} exists. 

LEMMA 8.7. For all r > 1 and i,j ∈ [0,k], {x ∈ S[r]: 
x[i]|x[j]} exists. 
 LEMMA 8.8. For all r > 1, i ∈ [0,k], and A ⊆ [0,r), {x ∈ 
S[r]: x[i] ∈ A} exists. 

LEMMA 8.9. Let φ be a propositional combination of formulas 
xi = 0, xi = 1, xi+xj = xp, xi|xj, xi ∈ Aj, where i,j,p ∈ 
[0,k]. The following is provable in FSTZ. ∀ r > 1 and A0, ...,Ak ⊆ 
[0,r), {x0r0 + ... + xkr2k: φ ∧ x0,...,xk ∈ [0,r)} exists.



LEMMA 8.10. For all r > 1, i ∈ [0,k], and E ⊆ S[r], {x ∈ 
S[r]: (∃y ∈ E)(∀j ∈ [0,k]\{i})(x[j] = y[j])} exists. 

LEMMA 8.11. Let φ be a propositional combination of 
formulas xi = 0, xi = 1, xi+xj = xp, xi|xj, xi ∈ Aj, where 
i,j,p ∈ [0,k]. Let m ∈ [1,k]. Let ψ = (Qmxm ∈ [0,r))...(Qkxk 
∈ [0,r))(φ). The following is provable in FSTZ. For all 
A0,...,Ak ⊆ [0,r), {x0r0 + ... + xm-1r2m-2: ψ ∧ x0,...,xm-1 ∈ 
[0,r)} exists. 

LEMMA 8.12. Let r > 1, E ⊆ S[r], i1 < ... < ip ∈ [0,k], and 
x1,...,xp ∈ [0,r). Then {y ∈ S[r]: y[i1] = x1 ∧ ... ∧ y[ip] = 
xp} exists. 

LEMMA 8.13. Let φ be a formula without bound set variables 
whose atomic subformulas are of the form xi = 0, xi = 1, 
xi+xj = xp, xi|xj, xi ∈ Aj. Let y,z be distinct integer 
variables, where z does not appear in φ. Then FSTZ proves 
that {y ∈ [0,z]: φz} exists. Also FSTZ proves that {y ∈ [- 
z,z]: φz} exists. 

LEMMA 8.14. Let φ be a formula without bound set variables 
whose atomic subformulas are of the form s = t, s < t, s|t, 
or t ∈ Aj, where s,t are terms without •. Let y,z be 
distinct integer variables, where z does not appear in φ. 
Then FSTZ proves that {y ∈ [-z,z]: φz} exists. 



Formulas of the form in Lemma 8.14 are called special 
formulas.
 
Note that we do not allow ⋅ in special formulas. We first 
need to use Lemma 8.14 to obtain some basic number theory 
before we can handle ⋅ appropriately. 

LEMMA 8.15. x,y ≠ 0 ⇒ gcd(x,y),lcm(x,y) exist. x > 1 ⇒ x 
is divisible by a prime. 

LEMMA 8.16. Suppose x,y > 1 and ax + by = 1. Then there 
exists cx + dy = 1, where c ∈ (0,y), d ∈ (-x,0). Suppose 
x,y > 0 and ax + by = 1. Then there exists cx + dy = 1, 
where c ∈ [0,y], d ∈ [-x,0]. 

LEMMA 8.17. Let x,y be relatively prime. Then there exists 
a solution to ax + by = 1. 

LEMMA 8.18. Let p be a prime and suppose p|xy. Then p|x or 
p|y. 

LEMMA 8.19. Let x,y be relatively prime and let x,z be 
relatively prime. Suppose x|yz. Then x = 1 or -1.

LEMMA 8.20. Let x,y be relatively prime and x|yz. Then x|z. 



LEMMA 8.21. Let a,b be relatively prime. Then the least 
positive common multiple of a,b is ab. 

LEMMA 8.22. There is a special formula φ with free 
variables among x,y such that the following is provable in 
FSTZ. For all z there exists z’ > z such that (∀x,y ∈ 
[-z,z])(x = y2 ⇔ φz’). 

LEMMA 8.23. There is a special formula φ with free 
variables among u,v,w, such that the following is provable 
in FSTZ. For all z there exists z’ > z such that (∀u,v,w ∈ 
[-z,z])(u⋅v = w ⇔ φz’). 

LEMMA 8.24. Let φ be a formula without bound set variables 
whose atomic subformulas are of the form xi = 0, xi = 1, 
xi+xj = z, xi⋅xj = xp, xi ∈ Aj. Let y,z be distinct integer 
variables, where z does not appear in φ. Then FSTZ proves 
that {y ∈ [-z,z]: φz} exists. 

LEMMA 8.25. Let φ be a formula without bound set variables. 
Let y,z be distinct integer variables, where z does not 
appear in φ. Then FSTZ proves that {y ∈ [-z,z]: φz} exists. 



We now define the class of formulas of FSTZ, Σ0(Z,fst). 
i) every atomic formula of FSTZ is in Σ0(Z,fst); 
ii) if φ,ψ are in Σ0(Z,fst), then so are ¬φ, φ ∧ ψ, φ ∨ ψ, 
φ ⇒ ψ, φ ⇔ ψ; 
iii) if φ is in Σ0(Z,fst), x is an integer variable, s,t are 
integer terms, x not in s,t, then (∀x ∈ [s,t])(φ) and (∃x ∈ 
[s,t])(φ) are in Σ0(Z,fst). 

LEMAM 8.26. Let φ be in S0(Z,fst). Let x1,...,xk be an 
enumeration without repetition of at least the free 
variables of φ. The following is provable in FSTZ. Let r > 
1. Then {x1r1 + ... + xkrk: x1,...,xk ∈ [0,r) ∧ φ} exists.

LEMMA 8.27. Let φ lie in Σ0(Z,fst). Let z be an integer 
variable that does not appear in φ. Then FSTZ proves that 
{y ∈ [-z,z]: φ} exists. 

THEOREM 8.28. FSTZ can be axiomatized as follows. 
1. LOID(Z). 
2. (∃A)(∀x)(x ∈ A ⇔ (y < x < z ∧ φ)), where φ ∈ Σ0(Z,fst) 

and A is not free in φ. 
3. Every nonempty set has a least element. 

THEOREM 8.29. FSTZ is a conservative extension of PFA(Z). 



FSQZ - integers and finite sequences of integers. ring operations, <, 
length, i-th term.

1. Linearly ordered integral domain axioms. 
2. lth(α) ≥ 0. 
3. val(α,n)↓ ⇔ 1 ≤ n ≤ lth(α). 
4. The finite sequence (0,...,n) exists. 
5. lth(α) = lth(β) → -α,α+β,α⋅β exist. 
6. The concatenation of α,β exists. 
7. For all n ≥ 1, the concatenation of α, n times, exists. 
8. There is a finite sequence enumerating the terms of α 
that are not terms of β. 
9. Every nonempty finite sequence has a least term. 

We now give a very simple interpretation of FSTZ in FSQZ, 
which is the identity on the Z sort. It follows immediately 
that FSQZ proves PFA(Z). We then show that FSQZ is a 
conservative extension of PFA(Z). 

The interpretation of the integer part is the identity. The 
interpretation of the sets of integers in FSQZ are the 
sequences of integers in FSZ. The ∈ relation is interpreted 
as

n ∈ x if and only if n is a term of a. 



FSTZ
1. Linearly ordered integral domain axioms. 
2. Finite interval. [x,y] exists. 
3. Boolean difference. A\B = {x ∈ A: x ∉ B} exists. 
4. Set addition. A+B = {x+y: x ∈ A ∧ x ∈ B} exists. 
5. Set multiplication. A⋅B = {x⋅y: x ∈ A ∧ x ∈ B} exists. 
6. Least element. Every nonempty set has a least element. 
FSQZ
1. Linearly ordered integral domain axioms. 
2. lth(α) ≥ 0. 
3. val(α,n)↓ ⇔ 1 ≤ n ≤ lth(α). 
4. The finite sequence (0,...,n) exists. 
5. lth(α) = lth(β) → -α,α+β,α⋅β exist. 
6. The concatenation of α,β exists. 
7. For all n ≥ 1, the concatenation of α, n times, exists. 
8. There is a finite sequence enumerating the terms of α 
that are not terms of β. 
9. Every nonempty finite sequence has a least term. 

Logical strength begins with EFA (exponential function arithmetic, 
IΣ0(exp)). T has logical strength if and only if EFA is interpretable 
in T. 

CONVENIENT WAYS TO GET LOGICAL STRENGTH FROM FSTZ, FSQZ

FSTZ + “every nonempty set of nonzero integers has a common multiple.
FSQZ + “the terms in every nonempty finite sequence of nonzero 
integers has a common multiple.
FSQZ + “there is a sequence of every nonzero finite length with 
starts 1 and where each term is twice the previous term”.
 Conservative over EFA. Mutually interpretable with EFA. 



FINITE SRM
FSQZO

We now go beyond the scope of 
The Inevitability of Logical Strength: strict reverse mathematics. 
Logic Colloquium '06, ASL. October, 2009. Cambridge University Press.

We leverage off of FSQZ + EXP to get FSQ. 

1. Variables over integers, objects, and finite sequences of objects. 
Integers and finite sequences are objects.
2. FSQZ for finite sequences of integers. 
3. FSQZ for finite sequences, where it makes sense.
4. Elimination of repetitions in finite sequences.
5. Characterization of the finite sequences whose terms are among a 
given finite sequence.
6. Characterization of finite sequences of finite sequences using 
three finite sequences.  

FSTSQO

1. Variables over integers, objects, finite sets, and finite 
sequences. Everything is an object.
2. Extensionality for sets. Sets correspond to ranges of sequences. 
3. Sequences of sets correspond to sequences of sequences using 
ranges.



WHAT ABOUT INFINITE SRM?

Pleasant surprise!

Three sorts: N,Z,SQ. SQ stands for functions from N into Z. 
Variables ni over N. Variables xi over Z. Variables αi over SQ. 
+,-,⋄,<,| |,0,1,=. Also application, α[t], where t is of sort N. 
This has sort Z. 

STRICT RCA0

1. Appropriate flavor of first order predicate calculus with 
equality.
2. Discrete ordered ring axioms.
3. Relationship between N and Z. (∀x)(x ≥ 0 iff (∃n)(x = n)).
4. Extensionality for sequences..
5. If β is entirely N valued, then α[β[n]] defines a sequence. 
6. The constant sequences and the identity sequence exists. 
7. Closure of the sequences under addition, multiplication, 
subtraction.
8. Iteration. If β is entirely N valued, then we can define α[0] = 
t, α[n+1] = β[α[n]]. 
9. Every sequence has a term of least magnitude.
10. Every eventually constant sequence has a least term.
11. Let α be unbounded above. Define β[n] = first term of α that 
is > n. 
Outright equivalent to RCA0 for its language!



Three sorts: N,Z,SQ. SQ stands for functions from N into Z. Variables ni over N. Variables 
xi over Z. Variables αi over SQ. 
+,-,⋄,<,| |,0,1,=. Also application, α[t], where t is of sort N. This has sort Z. 

STRICT RCA0

1. Appropriate flavor of first order predicate calculus with equality.
2. Discrete ordered ring axioms.
3. Relationship between N and Z. (∀x)(x ≥ 0 iff (∃n)(x = n)).
4. Extensionality for sequences..
5. If β is entirely N valued, then α[β[n]] defines a sequence. 
6. The constant sequences and the identity sequence exists. 
7. Closure of the sequences under addition, multiplication, subtraction.
8. Iteration. If β is entirely N valued, then we can define α[0] = t, α[n+1] = β[α[n]]. 
9. Every sequence has a term of least magnitude.
10. Every eventually constant sequence has a least term.
11. Let α be unbounded above. Define β[n] = first term of α that is > n. 

Outright equivalent to RCA0 for its language!

STRICT WKL0

1. Strict RCA0.
2. For every bit sequence α there exists a bit sequence β such that 
every finite initial segment of β is extended by some block in α of 
the form α[n],...,α[2n].
 
Outright equivalent to WKL0 for its language!



Three sorts: N,Z,SQ. SQ stands for functions from N into Z. Variables ni over N. 
Variables xi over Z. Variables αi over SQ. 
+,-,⋄,<,| |,0,1,=. Also application, α[t], where t is of sort N. This has sort Z. 

STRICT RCA0

1. Appropriate flavor of first order predicate calculus with equality.
2. Discrete ordered ring axioms.
3. Relationship between N and Z. (∀x)(x ≥ 0 iff (∃n)(x = n)).
4. Extensionality for sequences..
5. If β is entirely N valued, then α[β[n]] defines a sequence. 
6. The constant sequences and the identity sequence exists. 
7. Closure of the sequences under addition, multiplication, subtraction.
8. Iteration. If β is entirely N valued, then we can define α[0] = t, α[n+1] = β[α[n]]. 
9. Every sequence has a term of least magnitude.
10. Every eventually constant sequence has a least term.
11. Let α be unbounded above. Define β[n] = first term of α that is > n. 

Outright equivalent to RCA0 for its language!

STRICT ACA0

1-8. As in Strict RCA0.
9. If α is bounded below, and no term of α appears arbitrarily far 
out, then α has a permutation which is increasing (≤).



Three sorts: N,Z,SQ. SQ stands for functions from N into Z. Variables ni over N. 
Variables xi over Z. Variables αi over SQ. 
+,-,⋄,<,| |,0,1,=. Also application, α[t], where t is of sort N. This has sort Z. 

STRICT ACA0

1. Appropriate flavor of first order predicate calculus with equality.
2. Discrete ordered ring axioms.
3. Relationship between N and Z. (∀x)(x ≥ 0 iff (∃n)(x = n)).
4. Extensionality for sequences..
5. If β is entirely N valued, then α[β[n]] defines a sequence. 
6. The constant sequences and the identity sequence exists. 
7. Closure of the sequences under addition, multiplication, subtraction.
8. Iteration. If β is entirely N valued, then we can define α[0] = t, α[n+1] = β[α[n]]. 
9. If α is bounded below, and no term of α appears arbitrarily far out, then α has a 
permutation which is increasing (≤).

Outright equivalent to ACA0 for its language!
Strict ATR0

Three sorts: N,Q,SQ. SQ stands for functions from N into Q. Variables 
ni over N. Variables qi over Q. Variables αi over SQ. 
+,-,⋄,<,/,| |,0,1,=,floor,ceiling. Also application, α[t], where t is 
of sort N. This has sort Q. 

1-9. From Strict ACA0, adapted for N and Q. In 9, a is entirely N 
valued.
10. Given any two sequences, either there is a pointwise continuous 
1-1 map from the range of the first into the range of the second, or 
a pointwise continuous 1-1 map from the range of the second into the 
range of the first. Formulated using maps from indices to indices.   
 
Outright equivalent to ATR0 for its language!



Three sorts: N,Z,SQ. SQ stands for functions from N into Z. Variables ni over N. 
Variables xi over Z. Variables αi over SQ. 
+,-,⋄,<,| |,0,1,=. Also application, α[t], where t is of sort N. This has sort Z. 

STRICT ACA0

1. Appropriate flavor of first order predicate calculus with equality.
2. Discrete ordered ring axioms.
3. Relationship between N and Z. (∀x)(x ≥ 0 iff (∃n)(x = n)).
4. Extensionality for sequences..
5. If β is entirely N valued, then α[β[n]] defines a sequence. 
6. The constant sequences and the identity sequence exists. 
7. Closure of the sequences under addition, multiplication, subtraction.
8. Iteration. If β is entirely N valued, then we can define α[0] = t, α[n+1] = β[α[n]]. 
9. If α is bounded below, and no term of α appears arbitrarily far out, then α has a 
permutation which is increasing (≤).

Outright equivalent to ACA0 for its language!
Strict Π11-CA0

Three sorts: N,Q,SQ. SQ stands for functions from N into Q. Variables 
ni over N. Variables qi over Q. Variables αi over SQ. 
+,-,⋄,<,/,| |,0,1,=,floor,ceiling. Also application, α[t], where t is 
of sort N. This has sort Q. 

1-9. From Strict ACA0, adapted for N and Q. In 9, α is entirely N 
valued.
10. Any sequence with a subsequence whose range has “between any 
elements there is a third”, has such a subsequence whose range is 
maximal.  
 
Outright equivalent to Π11-CA0 for its language!


