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NOTE: This is an edited version of my lecture at LC ‘06. It differs 
from my earlier lecture at the Gödel Centenary in Vienna, April 29, 
2006 most notably in section 5, where “Finite Graph Theory” is replaced 
by “Order Calculus”. 
 
1. General Remarks. 
2. Wqo theory. 
3. Borel selection. 
4. Boolean relation theory. 
5. Order Calculus.  
 
1. GENERAL REMARKS. 
 
I would like to open with the same general remarks that I 
delivered at the Gödel Centenary meeting in Vienna a few 
months ago.  
 
Gödel's legacy is still very much in evidence. It must be 
noted that a careful analysis reveals that his great 
insights raise more issues than they resolve. The Gödel 
legacy practically begs for renewal and expansion at a 
fundamental level. 
 
When I entered the field some forty years ago, I seized on 
one glaring opportunity for renewal and expansion. The 
independence results from ZFC and significant fragments 
lied in a very narrow range, and had systemic features that 
are glaringly unrepresentative of mathematics and 
mathematical subjects generally.  
 
This state of affairs suggests obvious informal conjectures 
to the effect that there are severe systemic limitations to 
the incompleteness phenomena, 
culminating in informal conjectures to the effect that, in 
principle, there is no relevance of set theoretic methods 
to "genuine" mathematical activity. 
 
Now, there is no question that this central aspect of 
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Gödel's legacy, incompleteness, will diminish over time if 
such informal conjectures are not addressed in a 
substantial way. I have devoted a major part of my efforts 
over forty years to this endeavor. 
 
I view this effort as part of a perhaps slow but steady 
evolutionary process. I have every confidence that this 
process will steadily continue in a striking manner for the 
foreseeable future. 
 

EXOTIC CONJECTURE 
 
Every interesting mathematical theorem can be 
recast as one among a natural finite set of 
statements, all of which can be decided using well 
studied extensions of ZFC, but not within ZFC 
itself. 
 
The recasting of mathematical theorems as elements of 
natural finite sets of statements represents an inevitable 
general expansion of mathematical activity. This applies to 
any standard mathematical context. This program has been 
carried out, to a very limited extent, by BRT – and 
hopefully soon by Order Calculus. Some details are below.  
 
2. WQO THEORY. 
 
Wqo theory is a branch of combinatorics which has proved to 
be a fertile source of deep metamathematical pheneomena. 
 
A qo (quasi order) is a reflexive transitive relation (A,≤). 
A wqo (well quasi order) is a qo (A,≤) such that for all 
x1,x2,... from A, ∃ i < j such that xi ≤ xj.  
 
Highlights of wqo theory: that certain qo’s are wqo’s.  
 
J.B. Kruskal treats finite trees as finite posets, and 
studies the qo   
 

∃ an inf preserving embedding from T1 into T2. 
 
THEOREM 2.1. (J.B. Kruskal). The above qo of finite trees 
as posets is a wqo.  
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We observed that the connection between wqo’s and well 
orderings can be combined with known proof theory to 
establish independence results.  
 
The standard formalization of “predicative mathematics” is 
due to Feferman/Schutte  = FS. Poincare, Weyl, and others 
railed against impredicative mathematics. 
 
THEOREM 2.2. Kruskal’s tree theorem cannot be proved in FS. 
 
KT goes considerably beyond FS, and an exact measure of KT 
is known through published work of Rathjen/Weiermann.  
 
Kruskal actually considered finite trees whose vertices are 
labeled from a wqo ≤*. The additional requirement on 
embeddings is that  
 

label(v) ≤* label(h(v)). 
 
THEOREM 2.3. (J.B. Kruskal). The qo of finite trees as 
posets, with vertices labeled from any given wqo, is a wqo.  
 
Labeled KT is considerably stronger, proof theoretically, 
than KT, even with only 2 labels, 0 ≤ 1. I have not seen a 
metamathematical analysis of labeled KT.  
 
Note that KT is a Π1

1 sentence and labeled KT is a Π1
2 in 

the hyperarithmetic sets.  
 
THEOREM 2.4. Labeled KT does not hold in the 
hyperarithmetic sets. In fact, RCA0 + KT implies ATR0.  
 
It is natural to impose a growth rate in KT in terms of the 
number of vertices of Ti. 
 
COROLALRY 2.5. (Linearly bounded KT). Let T1,T2,... be a 
linearly bounded sequence of finite trees. ∃ i < j such that 
Ti is inf preserving embeddable into Tj. 
 
COROLLARY 2.6. (Computational KT). Let T1,T2,... be a 
sequence of finite trees in a given complexity class. There 
exists i < j such that Ti is inf preserving embeddable into 
Tj. 
 
Note Corollary 2.6 is Π0

2.   
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THEOREM 2.7. Corollary 2.5 cannot be proved in FS. This 
holds even for linear bounds with nonconstant coefficient 
1.  
 
THEOREM 2.8. Corollary 2.6 cannot be proved in FS, even for 
linear time, logarithmic space. 
 
By an obvious application of weak Konig’s lemma, Corollary 
2.5 has very strong uniformities.  
 
THEOREM 2.9. (Uniform linear-ly bounded KT). Let T1,T2,... 
be a linearly bounded sequence of finite trees. There 
exists i < j ≤ n such that Ti is inf preserving embeddable 
into Tj, where n depends only on the given linear bound, and 
not on the trees T1,T2,... . 
 
With this kind of strong uniformity, we can obviously strip 
the statement of infinite sequences of trees.  
 
For nonconstant coefficient 1, we have: 
 
THEOREM 2.10. (finite KT). Let n >> k. For all finite trees 
T1,...,Tn with each |Ti| ≤ i+k, there exists i < j such that 
Ti is inf preserving embeddable into Tj.  
 
Since Theorem 2.10 → Theorem 2.9 → Corollary 2.5 
(nonconstant coefficient 1), we see that Theorem 2.10 is 
not provable in FS. 
 
Other Π0

2 forms of KT involving only the internal structure 
of a single finite tree can be found in the Feferfest 
volume.  
 
I proved analogous results for EKT = extended Kruskal 
theorem, which involves a finite label set and a gap 
embedding condition. Only here the strength jumps up to 
that of Π1

1-CA0.  
 
I said that the gap condition was natural (i.e., EKT was 
natural). Many people were unconvinced. 
 
Soon later, EKT became a tool in the proof of the famous 
graph minor theorem of Robertson/Seymour. 
 
THEOREM 2.11. Let G1,G2,... be finite graphs. There exists i 
< j such that Gi is minor included in Gj. 
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I then asked Robertson/ Seymour to prove a form of EKT that 
I knew implied full EKT, just from GMT. They complied, and 
we wrote a triple paper.  
 
The upshot is that GMT is not provable in Π1

1-CA0. Just 
where GMT is provable is unclear, and recent discussions 
with Robertson have not stabilized. I disavow remarks in 
the triple paper about where GMT can be proved. 
 
An extremely interesting consequence of GMT is the subcubic 
graph theorem. A subcubic graph is a graph where every 
vertex has valence ≤ 3. (Loops and multiple edges are 
allowed). 
 
THEOREM 2.12. Let G1,G2,... be subcubic graphs. There exists 
i < j such that Gi is embeddable into Gj as topological 
spaces (with vertices going to vertices). 
 
Robertson/Seymour also claims to be able to use the 
subcubic graph theorem for linkage to EKT. Therefore the 
subcubic graph theorem (even in the plane) is not provable 
in Π1

1-CA0.  
 
We have discovered lengths of proof phenomena in wqo 
theory. We use Σ01 sentences.  
 
*) Let T1,...,Tn be a sufficiently long sequence of trees 
with vertices labeled from {1,2,3}, where each |Ti| ≤ i. 
There exists i < j such that Ti is inf and label preserving 
embeddable into Tj. 
 
**) Let T1,...,Tn be a sufficiently long sequence of 
subcubic graphs, where each |Ti| ≤ i+13. There exists i < j 
such that Gi is homeomorphically embeddable into Gj.  
 
THEOREM 2.13. Every proof of *) in FS uses at least 2[1000] 
symbols. Every proof of **) in Π1

1-CA0 uses at least 2[1000] 
symbols. 
 
Andreas Weiermann and his colleagues have been vigorously 
pursuing striking “threshold” or “phase transition” 
phenomena surrounding finite KT (Theorem 2.10 above) and 
many other combinatorial statements. In finite KT, for 
fixed k, i+k is a linear function. I.e., the functions f(i) 
= i+k form a class of functions used for finite KT. For a 
given class of functions, appropriately presented, we can 
ask about the metamathematical status of finite KT based on 
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these functions. The results tell us that if the class of 
functions represent a growth rate below (above) a certain 
threshold growth rate, then finite KT (or the combinatorial 
statement being treated) is provable (unprovable) in a 
relevant formal system. 
    
3. BOREL SELECTION. 
 
Let S ⊆ ℜ2 and E ⊆ ℜ. A selection for A on E is a function 
f:E → ℜ whose graph is contained in S.  
 
A selection for S is a selection for S on ℜ.  
 
We say that S is symmetric if and only if S(x,y) ↔ S(y,x). 
 
THEOREM 3.1. Let S ⊆ ℜ2 be a symmetric Borel set. Then S or 
ℜ2\S has a Borel selection.  
 
My proof of Theorem 3.1 relied heavily on Borel 
determinacy, due to D.A. Martin.  
 
THEOREM 3.2. Theorem 3.1 is provable in ZFC, but not 
without the axiom scheme of replacement.  
 
There is another kind of Borel selection theorem that is 
implicit in work of Debs and Saint Raymond of Paris VII. 
They take the general form: if there is a nice selection 
for S on compact subsets of E, then there is a nice 
selection for S on E.  
 
THEOREM 3.3. Let S ⊆ ℜ2 be Borel and E ⊆ ℜ be Borel with 
empty interior. If there is a continuous selection for S on 
every compact subset of E, then there is a continuous 
selection for S on E.  
 
THEOREM 3.4. Let S ⊆ ℜ2 be Borel and E ⊆ ℜ be Borel. If 
there is a Borel selection for S on every compact subset of 
E, then there is a Borel selection for S on E.  
 
THEROEM 3.5. Theorem 3.3 is provable in ZFC but not without 
the axiom scheme of replacement. Theorem 3.4 is neither 
provable nor refutable in ZFC.  
 
We can say more.  
 
THEOREM 3.6. The existence of the cumulative hierarchy up 
through every countable ordinal is sufficient to prove 



 7 

Theorems 3.1 and 3.3. However, the existence of the 
cumulative hierarchy up through any suitably defined 
countable ordinal is not sufficient to prove Theorem 3.1 or 
3.3.  
 
DOM: The f:N → N constructible in any given x ⊆ N are 
eventually dominated by some g:N → N. 
 
THEOREM 3.7. ZFC + Theorem 3.4 implies DOM (H. Friedman). 
ZFC + DOM implies Theorem 3.4 (Debs/Saint Raymond). 
 
4. BOOLEAN RELATION THEORY. 
 
We begin with two examples of statements in BRT of special 
importance for the theory. 
 
THIN SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists an 
infinite set A ⊆ N such that f[Ak] ≠ N. 
 
COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk → N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an infinite 
set A ⊆ N such that f[Ak] = N\A. 
 
These two theorems are official statements in BRT. In the 
complementation theorem, A is unique. 
 
We now write them in BRT form. 
 
THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such 
that fA ≠ N. 
 
COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ 
INF such that fA = N\A.  
 
The thin set theorem lives in IBRT in A,fA. There are only 
22^2 = 16 statements in IBRT in A,fA. These are easily 
handled.  
 
The complementation theorem lives in EBRT in A,fA. There 
are only 22^2 = 16 statements in IBRT in A,fA. These are 
easily handled. 
 
For EBRT/IBRT in A,B,C,fA,fB,fC,gA,gB,gC, we have 22^9 = 2512 
statements. This is entirely unmanageable. It would take 
several major new ideas to make this manageable.  
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DISCOVERY. There is a statement in EBRT in A,B,C,fA,fB, 
fC,gA,gB,gC that is independent of ZFC. It can be proved in 
MAH+ but not in MAH. In fact, it cannot be proved in MAH + 
V = L. 
 
Here MAH+ = ZFC + “for all n there exists a strongly n-
Mahlo cardinal”. MAH = ZFC + {there exists a strongly n-
Mahlo cardinal}n. 
 
The particular example is far nicer than any “typical” 
statement in EBRT in A,B,C,fA,fB,fC,gA,gB,gC. However, it 
is not nice enough to be regarded as suitably natural.  
 
Showing that all such statements can be decided in MAH+ 
seems to be too hard.  
 
What to do? Look for a natural fragment of full EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC that includes the example, where I 
can decide all statements in the fragment within MAH+.  
 
Also look for a bonus: a striking feature of the 
classification that is itself independent of ZFC.  
 
Then we have a single natural statement independent of ZFC.  
 
In order to carry this off, we use somewhat different 
functions.  
 
We use ELG = expansive linear growth. 
 
These are functions f:Nk → N such that there exist 
constants c,d > 1 such that  
 

c|x| ≤ f(x) ≤ d|x| 
 
holds for all but finitely many x ∈ Nk.  
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

 
X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Here X,Y,V,W,P,R,S,T are among the three letters A,B,C.  
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Note that there are 6561 such statements. We have shown 
that all of these statements are provable or refutable in 
RCA0, with exactly 12 exceptions.  
 
These 12 exceptions are really exactly one exception up to 
the obvious symmetry: permuting A,B,C, and switching the 
two clauses. 
 
The single exception is the exotic case 
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

 
A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
This statement is provably equivalent to the 1-consistency 
of MAH, over ACA’. 
 
If we replace “infinite” by “arbitrarily large finite” then 
we can carry out this second classification entirely within 
RCA0.  
 
Inspection shows that all of the nonexotic cases come out 
with the same truth value in the two classifications, and 
that is of course provable in RCA0.  
 
Furthermore, the exotic case comes out true in the second 
classification. 
 
THEOREM 4.1. The following is provable in MAH+ but not in 
MAH (or even MAH + V = L). An instance of the Template 
holds if and only if in that instance, “infinite” is 
replaced by “arbitrarily large finite”.  
 
From the Introduction, recall  
 

EXOTIC CONJECTURE 
 
Every interesting mathematical theorem can be 
recast as one among a natural finite set of 
statements, all of which can be decided using well 
studied extensions of ZFC, but not within ZFC 
itself. 
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Theorem 4.1 as it stands is not exactly a case of this 
Exotic Conjecture, as the Exotic Case (Proposition A) is 
not a mathematical theorem. It can also be criticized as 
being too ad hoc to be interesting. 
 
However, consider the considerably more natural statements: 
 
THEOREM I. For all f,g ∈ ELG there exist A,B ∈ INF such 
that  

 
A ∪. fA ⊆ B ∪. gB. 

 
THEOREM II. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

 
A ∪. fA ⊆ B ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
These are both Theorems of RCA0. 
 
We could start from any one or both of these mathematical 
theorems and then embed them into our class of 6561 
statements in order to provide an instance of this Exotic 
Conjecture. 
 
We freely admit that this is not a very satisfactory 
instance of this Exotic Conjecture, and is certainly poor 
evidence for it. Nevertheless we believe in this Exotic 
Conjecture.  
 
5. ORDER CALCULUS. 
 
There is a well known theorem in graph theory, with many 
essentially equivalent formulations. It is really our 
complementation theorem in a graph theory setting.  
 
THEOREM 5.1. In any finite dag G there exists A ⊆ V(G) such 
that GA = A’. Furthermore, A is unique.  
 
Here GA is the set of all heads of edges in G whose tail 
lies in A, and A’ = V(G)\A.  
 
According to Steve Hedetniemi hedet@cs.clemson.edu,  
 
“A is what is called a solution in digraph theory, and if 
you reverse all arcs, you get the well-known kernel. In our 
book Fundamentals of Domination in Graphs, by T.W. Haynes, 
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S.T. Hedetniemi and P.J. Slater, Marcel Dekker, 1998, we 
have a 1,224 entry bibliography in the back. This 
bibliography must contain about 100 papers on kernels in 
graphs.” 
 
We will instead use ordinary relation notation, and take 
this in a purely order theoretic direction. 
 
Let R ⊆ [1,n]k × [1,n]k. We think of R as the digraph G 
whose vertex set is [1,n]k, and whose edges are the elements 
of R.  
 
For A ⊆ [1,n]k, we write RA = {y: (∃x ∈ A)(R(x,y))}. Note 
that RA is the same as the GA used above.  
 
We say that R is strictly dominating iff R(x,y) → max(x) < 
max(y).  
 
Note that if R is strictly dominating then the 
corresponding digraph G is obviously a dag.  
 
THEOREM 5.2. For all n,k ≥ 1 and strictly dominating R ⊆ 
[1,n]k × [1,n]k, there exists A ⊆ [1,n]k such that RA = A’. 
Furthermore, A is unique.  
 
We say that B ⊆ [1,n]k is order invariant iff for all 
order equivalent x,y ∈ [1,n]k, x ∈ B iff y ∈ B. 
 
We state the weakened order invariant form of Theorem 5.2.  
 
THEOREM 5.3. For all n,k ≥ 1 and strictly dominating order 
invariant R ⊆ [1,n]k × [1,n]k, there exists A ⊆ [1,n]k such 
that RA = A’. Furthermore, A is unique. 
 
We now make our fundamental informal move. 
 
INFORMAL. For all n,k ≥ 1 and strictly dominating order 
invariant R ⊆ [1,n]k × [1,n]k, there exists A ⊆ [1,n]k such 
that RA and A’ are related.  
 
Let B,C ⊆ [1,n]k and α,β be finite sequences from [1,n]. We 
say that B,C are lower triple equivalent from α to β iff 
 

(∀x,y,z ∈ B ∪ C)(∃u,v,w ∈ B ∩ C) 
((x,y,z,α),(u,v,w,β) are order equivalent and  

min(x,y,z,α,β) ≥ min(u,v,w,α,β)). 
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PROPOSTION A. For all n >> k and strictly dominating order 
invariant R ⊆ [1,4n]k × [1,4n]k, there exists A ⊆ [1,3n]k 
such that RA,A’ are lower triple equivalent from n,2n to 
2n,3n, and from 2n,3n to n,2n. 
 
PROPOSTION B. For all n >> k and strictly dominating order 
invariant R ⊆ [1,5n]k × [1,5n]k, there exists A ⊆ [1,3n]k 
such that RA,A’ are lower triple equivalent from n,2n,3n to 
2n,3n,4n, and from 2n,3n,4n to n,2n,3n. 
 
PROPOSITION C. For all n >> k,p and strictly dominating 
order invariant R ⊆ [1,pn]k × [1,pn]k, there exists A ⊆ 
[1,pn]k such that RA,A’ are lower triple equivalent from 
n,2n,...,pn-2n to 2n,3n,...,pn-n, and from 2n,3n,...,pn-n 
to n,2n,...,pn-2n. 
 
THEOREM 5.4. The following is provable in EFA. Proposition 
A implies Con(ZFC + "there exists a totally indescribable 
cardinal") and is implied by Con(ZFC + "there exists a 
subtle cardinal"). Proposition B implies Con(ZFC + “there 
exists a subtle cardinal”) and is implied by Con(ZFC 
+”there exists a 2 subtle cardinal”). Proposition C is 
equivalent to Con(SUB). 
 
Here SUB = ZFC + {there exists an n subtle cardinal}n. 
 
Note that Propositions A-C are only explicitly Π0

3. They can 
be put into an equivalent explicitly Π0

1 form by eliminating 
n in favor of an expression in k,m (and k,m,p) as follows. 
 
PROPOSITION A’. For all n ≥ (8k)! and strictly dominating 
order invariant R ⊆ [1,4n]k × [1,4n]k, ∃ A ⊆ [1,3n]k such 
that RA,A’ are lower triple equivalent from n,2n to 2n,3n, 
and from 2n,3n to n,2n. 
 
PROPOSITION B’. For all n ≥ (8k)! and strictly dominating 
order invariant R ⊆ [1,5n]k × [1,5n]k, ∃ A ⊆ [1,4n]k such 
that RA,A’ are lower triple equivalent from n,2n,3n to 
2n,3n,4n, and from 2n,3n,4n to n,2n,3n.  
 
PROPOSITION C’. For all n ≥ (8kp)! and strictly dominating 
order invariant R ⊆ [1,pn]k × [1,pn]k, ∃ A ⊆ [1,pn]k such 
that RA,A’ are lower triple equivalent from n,2n,...,pn-2n 
to 2n,3n,...,pn-n, and from 2n,3n,...,pn-n to n,2n,...,pn-
2n.  
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We now come to plans for Templating these Propositions. 
Recall the successful Templating of Proposition A by the 
6561 statement Template above in section 4.  
 
We haven’t yet worked on any of these Templating plans. 
Nevertheless, we think that it is informative to present 
them. 
 
To begin with, we can use an arbitrary list of pairs of 
tuples of multiples of n.  
 
TEMPLATE I. For all n >> k,p and strictly dominating order 
invariant R ⊆ [1,pn]k × [1,pn]k, there exists A ⊆ [1,p]k 
such that RA,A’ are lower triple equivalent from α1 to β1, 
from α2 to β2, ..., from αq to βq. Here p,q are specific 
positive integers, and the α’s and β’s are finite tuples 
from {n,2n,...,pn}.  
 
We at least know that Template I holds if and only if for 
all i, αi and βi have the same order type, and the entry pn 
occurs in the same positions. What remains to be seen is 
just what the logical strength is of each statement.  
 
We can also use various Boolean combinations of A and RA. 
 
TEMPLATE II. For all n >> k,p and strictly dominating order 
invariant R ⊆ [1,pn]k × [1,pn]k, there exists A ⊆ [1,pn]k 
such that B1(A,RA),B1’(A,RA) are lower triple equivalent 
from α1 to β1, B1(A,RA),B1’(A,RA) are lower triple 
equivalent from α2 to β2, ..., Bq(A,RA),Bq’(A,RA) are lower 
triple equivalent from αq to βq,. Here p,q are specific 
positive integers, the α’s and β’s are finite tuples from 
{n,2n,...,pn}, and the B1(A,RA),B2(A,RA)’ are specific 
Boolean combinations of A,RA. 
 
This should be fully analyzable. Considerably more 
ambitious would be to allow the following wider class of 
compound Boolean expressions in A,R. These are defined 
inductively by 
 
i. A is an expression. 
ii. Boolean combinations of expressions are expressions. 
iii. R(X) is an expression if X is an expression. 
 
Thus we arrive at  
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TEMPLATE III. For all n >> k,p and strictly dominating 
order invariant R ⊆ [1,pn]k × [1,pn]k, there exists A ⊆ 
[1,pn]k such that B1(A,RA),B1’(A,RA) are lower triple 
equivalent from α1 to β1, B1(A,RA),B1’(A,RA) are lower triple 
equivalent from α2 to β2, ..., Bq(A,RA),Bq’(A,RA) are lower 
triple equivalent from αq to βq,. Here p,q are specific 
positive integers, the α’s and β’s are finite tuples from 
{n,2n,...,pn}, and the B1(A,RA),B2(A,RA)’ are specific 
compound Boolean combinations of A,RA.  
 
Much more ambitious Templates arise by asking for more than 
one set A. We can ask for sets A1,...,At such that some set 
of lower triple equivalences holds between various pairs of 
Boolean combinations of A1,...,At, R(A1),...,R(At) on various 
sets of multiples of n. We can even use compound Boolean 
combinations of A1,...,Ak,R. 
 
We can even go much much further by considering more than 
one strictly dominating order invariant R. 
 
A whole new dimension of difficulty arises when we wish to 
template the definition of  
 

B,C are lower triple equivalent from α to β. 
 
Recall that this takes the ∀∃ form 
 

(∀x,y,z ∈ B ∪ C)(∃u,v,w ∈ B ∩ C) 
((x,y,z,α),(u,v,w,β) are order equivalent and  

min(x,y,z,α,β) ≥ min(u,v,w,α,β)). 
 
We can replace B ∪ C, and B ∩ C, by various Boolean 
combinations of B,C. We can replace ≥ by >,<,=, and use 
various patterns of the letters x,y,z,u,v,w,α,β and allow 
multiple clauses inside the quantifier free part. We can 
also allow multiple ∀∃ sentences of this form, taken 
conjunctively. We can, of course, use two sets of 
variables, each of finite cardinalities other than 3 each, 
and also more Greek variables. 
 
Furthermore, we can combine the previous paragraph with the 
earlier Templating ideas.  
 
As above, these Templates are, technically speaking, Π0

3 
Templates. However, we can appropriately replace n >> k,t 
with n ≥ (8kt)! and obtain Π0

1 Templates. I.e., each 
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instance is a Π0
1 sentence. (Here t represents the size of 

the conclusion statement). 


