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1. HILARY 1964-65. 
 
I met Hilary for the first time in Fall, 1964. At that time 
I was an entering 16 year old Freshman at MIT.  
 
I already “knew” Hilary from the MIT course catalog. Let me 
explain. 
 
I was deeply moved in high school by Bertrand Russell’s 
Introduction to Mathematical Philosophy, a book Russell 
wrote in jail in World War I.  
 
Hilary remarked that his productivity substantially 
increased after his retirement from Harvard as University 
Professor.  
 
Come to think of it, could it be that jail may also be a 
good environment for scholarly work? No teaching, no 
committee work, and no pressure to follow conventional 
academic wisdom!  
 
In the Russell book, the status of the Axiom of Choice 
relative to the other axioms of set theory was raised as a 
central open question. 
 
I decided then that I would work on this problem when I got 
to MIT. But I received the MIT course catalog, which 
contained the course description for an advanced course in 
the Spring 1965, mentioning “consistency and independence 
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results of Paul J. Cohen concerning the Axiom of Choice and 
the Continuum Hypothesis”. Instructor: H. Putnam.  
 
So I realized that “my” problem was taken away. I wanted to 
meet this H. Putnam guy. 
 
I got an appointment with Hilary in the Fall of 1964 
outside Walker Memorial, on the MIT campus.  
 
I had an “easy” question for Hilary. I told Hilary that I 
had read Bertrand Russell's Introduction to Mathematical 
Philosophy, and Inquiry into Meaning and Truth, and also 
Hilbert and Ackermann, Principles of Mathematical logic. I 
wanted to know  
 

how does logic start? 
 
I said logic appeared to be circular because of all this 
careful thinking involved in setting up logic. I.e., there 
seemed to be logic involved in starting logic - and I was 
confused by this.  
 
Hilary said I should look at the Rosenbloom and Smullyan 
books, and not be paralyzed by this circularity. He gave me 
the distinct impression that he was able to do logic even 
though it was circular! 
 
Of course, I did ask Hilary something really deep, and I 
hope no student comes to me with that question! 
 
I remember going home, I think, for Christmas vacation, and 
listening to a BBC interview with Bertrand Russell over the 
radio. It was a short interview, and I savored every word.  
 
I distinctly remember thinking - Hilary Putnam is going to 
be the closest I will ever get to Bertrand Russell! This 
turned out to be essentially true - I also met Kurt Gödel 
in 1977. 
 
I took Hilary's course in Spring 1965 on graduate set 
theory, which included the work of Gödel and Cohen as 
advertised in the course catalog. Dick Boyd was the TA, and 
George Boolos was a fellow student! 
 
I also took Hilary's course on Hierarchy Theory the next 
year when he moved to Harvard. I remember traveling on the 
Mass Ave. bus to Harvard, on my way to Hilary's course, all 
the while talking to Tony Martin and Saul Kripke.  
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2. HILARY'S WORK ON VALIDITY AND SATISFIABILITY. 
 
Hilary's work with Martin Davis concerns a problem in 
mathematical logic that is at the core of a now very large 
subject called automated reasoning - a branch of artificial 
intelligence. 
 
Specifically, Hilary and Martin tackle the problem of 
determining whether a sentence in first order logic is 
valid - i.e., is true in all models.  
 
It had already been established by Alonzo Church (1936) 
that this endeavor is impossible in the following sense: 
there is no algorithm for determining validity in first 
order logic, even with only a single binary relation symbol 
and no equality.  
 
But Hilary and Martin had the good sense to try to give a 
practical algorithm that might work well in practical 
situations.  
 
Their idea was to put the negation of the first order logic 
sentence in prenex form, and go through a procedure that is 
tantamount to constructing a model. The original sentence 
will be valid if and only if this procedure gets blocked at 
some finite stage.  
 
This process is quite far from producing the desired 
practical results, but lies at the core of an enormous 
effort in automated reasoning that has had some substantial 
successes. 
 
The most innovative of the Hilary and Martin approach 
concerns the way that they recognize blocks (blockades) at 
finite stages.  
 
This innovation focuses entirely on propositional logic - a 
highly reduced form of predicate logic. In fact, "Davis 
Putnam algorithm" most commonly refers just to the 
propositional logic innovation only. 
 
In propositional logic, we have letters p1,p2,... standing 
for unknown sentences. We use the connectives ¬,∧,∨,→,↔ 
from mathematics. A propositional formula results from 
combining the letters and the connectives in the obvious 
coherent way.  
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Hilary and Martin focus on the satisfiability of 
propositional formulas. I.e., that there be an assignment 
of truth values (true,false) to the letters occurring in 
the formula, so that the formula comes out true.  
 
For many years, this has been referred to as SAT.  
 
There is the obvious ancient algorithm for SAT, which is to 
try out all of the possible 2n assignments, where n is the 
number of letters in the propositional formula. But one 
hopes to do much better than this, at least in practical 
situations. To this day, nobody knows whether you can avoid 
an exponential amount of steps - and instead use a 
polynomial number of steps. This is the famous P = NP 
problem in theoretical computer science. 
 
There is now a huge industry devoted to SAT, with major 
software packages and major applications ranging from the 
design and verification of circuits, airline scheduling, 
industrial control, cryptography, etc.  
 
At the core of this development is DP (Davis/Putnam), which 
operates on propositional formulas given, or reduced, to 
conjunctive normal form. This consists of a set of clauses, 
where each clause takes the form  
 

±pi1 ∨ ... ∨ ±pir 
 
where ±p is either p or ¬p. At each stage in the process, 
we have a list of sets of clauses.  
 
At any stage, The original set of clauses is satisfiable if 
and only if at least one of these sets of clauses is 
satisfiable.  
 
Steps are performed which successively eliminate letters, 
but at the cost of creating more sets of clauses.  
 
Specifically, to eliminate the letter p from one set of 
clauses, we can, on one hand, treating p like true; and on 
the other hand, treat p like false. This replaces the set 
of clauses by two sets of simpler clauses.  
 
Eventually, we just get sets of clauses that become a truth 
value. If true appears anywhere along the process, we can 
quit and declare satisfiability. Otherwise, we will wind up 
with all falses, in which case we declare unsatisfiability.  
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This is the so called DP (Davis/Putnam) algorithm. It is 
much better than simply trying out assignments.  
 
In the special case where a clause contains only one 
letter, or where a letter appears only positively or only 
negatively throughout the set of clauses, the letter can be 
eliminated without creating a new set of clauses. I.e., 
satisfiability/unsatisfiability is preserved. This is the 
basis of the DPLL algorithm (LL for Longemann and Loveland) 
- a very well known refinement of DP. 
 
More sophisticated refinements involve strategies for 
picking the letters to be eliminated from a given set of 
clauses. Such refinements are being intensively 
investigated to this day. 
 
3. HILARY'S WORK ON INTEGRAL POLYNOMIALS.  
 
In 1960, Hilary published the following remarkable result: 
 
There is no algorithm for determining whether a given 
polynomial with integer coefficients, in several integer 
variables, attains all integer values.  
 
Around the same time, Hilary joined forces with Martin 
Davis and Julia Robinson to work on Hilbert’s Tenth 
Problem. This problem is closely related to Hilary's 
result, but is more mathematically challenging. 
 
This problem is part of a famous list of 23 problems 
published by Hilbert around 1900 covering a very large 
number of areas of mathematics. 
 
H10 asks whether there is an algorithm for determining 
whether a polynomial with integer coefficients, in several 
integer variables, has a zero (i.e., attains the value 0). 
 
This problem was eventually solved negatively through the 
combined efforts of four people in reverse historical 
order: Yuri Matiyasevich, Juiia Robinson, Martin Davis, 
Hilary Putnam. It is called the MRDP theorem.  
 
The earliest of the relevant work is joint between Hilary 
and Martin and Julia Robinson. They tackled a related, but 
easier problem. 
 
Polynomials of course only involve addition, subtraction, 
multiplication, and specific integers.  
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Exponential polynomials are allowed exponentiation as well. 
There is a problem with staying in the integers, and so it 
is customary to disallow subtraction, and use only specific 
positive integers.  
 
Since we have barred subtraction, we consider so called 
exponential polynomial equations, where the left and right 
side are exponential polynomials, using specific positive 
integers.  
 
By an exquisitely clever multi component argument, Hilary 
and Martin and Julia showed that there was no algorithm for 
determining the existence of a solution in integers to 
Exponential Polynomial Equations. 
 
I.e., Hilary, Martin, and Julia solved H10 negatively for 
Exponential Polynomial Equations. 
 
It was evident at the time that in order to solve the 
actual H10 negatively, one need only prove the following: 
 
There is a polynomial P with integer coefficients such that 
for positive integers n,m,r, 
 

nm = r ↔ (∃t1,...,tk > 0)(P(n,m,r,t1,...,tk) = 0). 
 
Julia Robinson reduced this condition to an asymptotic one 
involving exponential growth rates. Finally, using Julia 
Robinson's work, in 1970, Yuri Matiyasevich proved the 
existence of the required polynomial P. 
 
This is the way in which H10 was solved negatively. The 
negative solution is actually stronger than just "no 
algorithm" in some very important ways. The strong negative 
solution is generally called the MRDP theorem.   
 
There are still some very major open problems left in this 
area of H10 and polynomials with integer coefficients. We 
provide a roadmap for the interested reader.  
 
KNOWN ALGORITHMS. 
 
1. Single variable Diophantine equations are easy. There 
are very old algorithms for determining the existence of a 
zero in the integers, in the rationals, in the reals, and 
in the complex numbers. 
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2. Tarski gave an algorithm in the 1950s for determining 
the existence of a zero in the reals, and also in the 
complex numbers.  
 
3. Carl Ludwig Siegel gave an algorithm for determining the 
existence of a zero for quadratic P, in the integers. 
Grunewald and Segal did this for the positive integers. I 
think that the situation is the same, probably with the 
same authors, for rationals and positive rationals.  
 
4. There is an algorithm for determining the existence of a 
zero in the integers, for two variable cubics P. 
 
NO ALGORITHM RESULTS.  
 
1. There is no algorithm for determining the existence of a 
zero, for quartic P with 58 variables, in the positive 
integers. James Jones. (Over the integers, somewhat more 
than 58 will suffice). 
 
2. There is no algorithm for determining the existence of a 
zero in the integers, with 11 variables. (Zhi Wei Sun, 
1992). (Over the positive integers, 9 will suffice, 
Matiyasevich). 
 
CRITICAL OPEN QUESTIONS IN THIS AREA. 
 
1. Is there is an algorithm for determining the existence 
of a solution in the integers, for cubic P? 
 
2. Is there an algorithm for determining the existence of a 
solution in the integers, for 2 variables? For 2 variables, 
degree 4? For 3 variables, degree 3?  
 
3. Is there an algorithm for determining the existence of a 
solution in the rationals? For 2 variables, degree 3?      
 
The MRDP theorem has lots of applications, generally, to 
show that many other properties of mathematical objects can 
be determined by algorithms. 
 
In my biased opinion, my favorite is the following problem 
formulated by yours truly. 
 
A line condition is a triple u,v,w which asserts that u,v,w 
lie on some common line in the usual Euclidean plane. Here 
the letters are either unknown integer points in the plane, 
or specific integer points in the plane. E.g.,  
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u,v,(-1,2) 

 
asserts that the integer point u, the integer point v, and 
the integer point (-1,2) lie on some common line. 
 
PROBLEM: Given a finite set of line conditions, determine 
whether they are simultaneously solvable. I.e., whether 
there are integer points in the plane such that every one 
of the line conditions hold. 
 
You can find an advanced draft on my website, where I also 
consider a number of closely related problems in integral 
Euclidean geometry. 
 
4, HILARY'S OTHER MATHEMATICAL WORK. 
 
I only have time to talk about a fraction of Hilary’s other 
mathematical work.  
 
1957. A decidable theory can have an essentially 
undecidable axiomatizable extension (with the same 
constants). 
 
1957. There is an undecidable theory all of whose complete 
extensions are decidable. 
 
1962 (1964 listed). F is the family of all sets represented 
in some consistent standard theory if and only if F is 
closed under intersection, finite set addition and finite 
set subtraction, and contains the null set and the 
“universal” set (i.e., the set of all nonnegative 
integers). 
 
1962 (1964 listed). F is the family of all sets represented 
in some consistent axiomatizable standard theory if and 
only if F is a recursively enumerable family of recursively 
enumerable sets, F contains the null set and the 
“universal” set, and F is closed under intersection and 
finite set addition and finite set subtraction. 
 
1963. There is an ordinal a less than constructible ω1 such 
that there is no set of integers in Lα+1- Lα. (Gaps in the 
constructible hierarchy, which led ultimately to fine 
structure theory in set theory).  
 
1965. P is a trial and error predicate if and only if P is 
Δ02. 



 9 

 
1965. Every consistent formula in predicate calculus 
without identity has a model in Σ1* = the smallest class 
containing the recursively enumerable predicates and closed 
under truth-functions. 
 
1965. Every consistent formula in predicate calculus with 
identity has a recursive model with a Π0

1 domain. 
 
1965 (with Pour-El). There is an r.e. class of r.e. sets 
which has no r.e. enumeration without repetition.  
 
1969 (with Hensel and Boyd). The ramified analytic sets 
form the least beta model of second order arithmetic, and 
also corresponds exactly to “admissible degree 
hierarchies”.  
 
And these appearing in Hilary's forthcoming book, 
Philosophy in the Age of Science.  
 
Indispensability Arguments in the Philosophy of 
Mathematics.  
 
Revisiting the Liar Paradox. 
 
Set Theory: Relaism, Replacement, and Modality. 
 
On Axioms of Set Existence. 
 
The Gödel Theorem and Human Nature. 
 
After Gödel. 
 
Nonstandard Models and Kripke’s Proof of the Gödel Theorem. 
 
A Theorem of Craig’s about Ramsey Sentences. 
 
5. TWO CONTROVERSIAL PHILOSOPHY OF MATHEMATICS PAPERS BY 
HILARY. 
 
1967. Mathematics Without Foundations, Journal of 
Philosophy. As is inevitable, your 16 year old Freshman 
student has rebelled! Of course, student rebellion is 
nearly inevitable.  
 
2000. (with Juliet Floyd). A Note on Wittgenstein’s 
‘Notorious Paragraph’ about the Gödel Theorem.” 
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At the opening of the 1967 article, Hilary writes what can 
be read as a total rejection of my concept of the 
Foundational Life, at least as applied to Foundations of 
Mathematics: 
 
“Philosophers and logicians have been so busy trying to 
provide mathematics with a “foundation” in the past half-
century that only rarely have a few timid voices dared to 
voice the suggestion that it does not need one. I wish here 
to urge with some seriousness the view of the timid voices. 
I don’t think mathematics is unclear; I don’t think 
mathematics has a crisis in the foundations; indeed, I do 
not believe mathematics either has or need “foundations.” 
The much touted problems in the philosophy of mathematics 
seem ro me, without exception to be problems internal to 
the thought of various system builders. The systems are 
doubtless interesting as intellectual exercises; debate 
between the systems and research within the systems 
doubtless will and should continue; but I would like to 
convince you (of course I won’t but one can always hope) 
that the various system of mathematical philosophy, without 
exception, need not be taken seriously.” 
 
Well, this ex 16 year old student wasn’t convinced, as 
Hilary predicted. Although Hilary touched on a large number 
of very interesting issues - such as determinate truth 
values and the continuum hypothesis - I don’t see how all 
that discussion really justified this apparent out and out 
repudiation of what I mean by f.o.m. Indeed, Geoffrey 
Hellman has talked here about his use of ideas in Hilary's 
1967 paper in connection with an approach to the 
foundations of set theory via modalities.  
 
We do have a foundation for mathematics in the sense of a 
rather powerful model of mathematical practice, through 
ZFC, which does a great job on a specific task, and which 
allows us to derive incredibly impressive facts about 
mathematical practice that reveal incredibly deep features, 
that simply cannot be established in any other way.   
 
For example, no less than Charles Fefferman (a famous 
analyst), when he was Editor of the Annals of Mathematics, 
said that ZFC provides an essential service in the way of 
codifying “the current rules of the road”. He says that “in 
order to be accepted for publication in the Annals, it is 
necessary but not sufficient that the proofs must be 
readily formalizable in ZFC. If not, any assumptions used 
going beyond ZFC have to be explicitly stated.”  
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A fact that one can reasonably conclude using theorems 
established about ZFC, is that a correct proof or 
refutation of certain problems in classical set theory will 
not come about - at least not come about without some 
completely noticeable fundamental change in the rules of 
the road. ZFC is a good enough model of mathematical 
practice to see that.   
 
No less than David Hilbert wanted to secure the consistency 
of mathematics on the basis of what amounts to fragments of 
PA. This was shown by f.o.m. to be impossible.  
 
Gödel proved  
 
there exists a sentence neither provable nor refutable in 
ZFC. 
 
What about the examples? Gödel proved 
 
there exists a finitary sentence neither provable nor 
refutable in ZFC. 
 
there exists a mathematically natural sentence neither 
provable nor refutable in ZFC. (joint with P.J. Cohen). 
 
However, in order to secure the long term deep relevance of 
Incompleteness, we need to establish  
 
*there exists a mathematically natural finitary sentence 
neither provable nor refutable in ZFC.* 
 
I worked on this most critical of all issues in f.o.m. 
almost every day for the last 45 years. This is not the 
right place to talk about what happened... 
 
I now come to the second of these controversial papers: 
 
2000. (with Juliet Floyd). A Note on Wittgenstein’s 
‘Notorious Paragraph’ about the Gödel Theorem.” 
 
I recognize the historical interest of interpreting 
Wittgenstein. You can tell that I am a fake historian 
because I like to create simplified history in order to 
provide “context” for what I am doing.   
 
To me, being such a fake historian, the fundamental thing 
that I take away from this 2000 article is  
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*the serious challenge of presenting a philosophically 
coherent and unassailable account just what is accomplished 
by Gödel’s Incompleteness Theorems.*  
 
In order to avoid certain kinds of philosophically clever 
criticisms, which can probably be defended against, with 
some difficulty, we focus on a particular restricted form 
of Incompleteness: there is no proof in finite set theory 
of the consistency of set theory. Another important version 
is: there is no interpretation of set theory in finite set 
theory. Hilbert can be interpreted as expecting and seeking 
such a proof.  
 
Here is a brief description of the elements of such an 
account: 
 
1. There is a model of mathematical practice, reflective of 
essential features of mathematical practice. Call this ZFC. 
 
2. There is a definition of “x is a finite set” arising in 
1), fully responsive to mathematical practice.  
 
3. There is a model of finitary mathematical practice, 
reflective of essential features of finitary mathematical 
practice. It is a weak fragment of ZFC whose formalization 
uses 2). Call this fragment FINZFC.   
 
4. There are sentences, with variables restricted to finite 
sets, as defined in 2), with various properties responsive 
to all sorts of considerations from mathematical practice, 
which are provable in ZFC but not in FINZFC.  
 
5. There are sentences, with variables restricted to finite 
sets, as define in 2), which assert that mathematical 
practice does not lead to contradiction, through asserting 
that ZFC is consistent, in a way that is fully responsive 
to mathematical practice, and which is not provable in 
FINZFC.   
 
6. EVALUATION OF HILARY'S WORK, AND HILARY'S NEW HOMEWORK. 
 
I was rather moved by the talk of Mario de Caro yesterday 
when he listed one fundamental philosophical issue after 
another that Hilary has written about in a major way. This 
appears to be systematic, with seminal insights on each 
issue. I can only conclude that  
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Hilary is arguably the greatest living exponent of the 
Philosophical Life.  
 
Consequently, Hilary is in dire need of being seriously 
challenged! So just as Hilary challenged me with some 
serious homework in Spring 1965 at MIT, I offer the 
following homework for Hilary. 
 
1. Give a model of physical science practice that is as 
philosophically coherent and powerful as the model of 
mathematical practice through ZFC.  
 
2. In particular, is the use of Hilbert space appropriate 
for use in a model of quantum mechanical practice? If so, 
why? If not, why not? 
 
3. Is mathematics useful? How is it useful?  Why is it 
useful?  
 
4. Give a model of applied mathematical practice that is as 
philosophically coherent and powerful as the model of 
mathematical practice through ZFC. 
 
5. Give a model of probabilistic and statistical practice 
that is as philosophically coherent and powerful as the 
model of mathematical practice through ZFC.  
 
6. Present a model of normative reasoning that is every bit 
as philosophically coherent and powerful as the model of 
mathematical practice through ZFC.  
 
7. Create a comprehensive system of coherent 
legal/political/social systems parameterized by fundamental 
irreducible viewpoints, that is as philosophically coherent 
and powerful as the model of mathematical practice through 
ZFC.  
 
8. Present a model of musical judgments focusing on musical 
micro structure, that is as philosophically coherent and 
powerful as the model of mathematical practice through ZFC.  
 
9. What is Philosophy? What is the future of Philosophy?  
 
10. A recipient of a homework assignment always have the 
option to argue that (some of) the homework problems are 
counterproductive, improperly formulated, or otherwise 
wrong headed.  
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In keeping with Moses' life span, let us all give Hilary 35 
years to complete his homework assignment! 
 
 


