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In this abstract, all digraphs are simple; i.e., have no
loops or multiple edges. The results remain unaffected if
loops are allowed (but not if multiple edges are allowed).

For digraphs G, we write V(G) for the set of all vertices
of G, and E(G) for the set of all edges of G. A digraph on
a set E is a digraph G where V(G) = E.

A dag is a directed acyclic graph; i.e., a digraph with no
cycles.

Let G be a digraph, and A Õ V(G). We write GA for the set
of all tails of edges in G whose heads lie in A. I.e.,

GA = {y Œ V(G): ($x Œ A)((x,y) Œ E(G))}.

We begin by quoting a well known theorem about dags. We
call it the complementation theorem.

COMPLEMENTATION THEOREM (finite dags). For all finite dags
G there is a unique A Õ V(G) such that GA = V(G)\A.

We can look at the Complementation Theorem in terms of a
large independent set. We say that A Õ V(G) is independent
in G if and only if there is no edge connecting elements of
A.

COMPLEMENTATION THEOREM (finite dags). Every finite dag has
a unique independent set A such that V(G)\A Õ GA.

We will focus on digraphs on sets of the form [1,n]k. Here
k,n
≥ 1 and [1,n] = {1,2,...,n}.

An upgraph on [1,n]k is a digraph on [1,n]k such that for
all (x,y) Œ E(G), max(x) < max(y).

The following is an immediate consequence of the
Complementation Theorem (finite dags), since upgraphs are
obviously dags.
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COMPLEMENTATION THEOREM (finite upgraphs). For all k,n ≥ 1,
every upgraph on [1,n]k has a unique independent set A such
that V(G)\A Õ GA.

Our development relies on what we call order invariant
digraphs on [1,n]k. These are the digraphs G on [1,n]k such
that the determination of whether (x,y) is an edge depends
only on the relative order of the coordinates of the vector
(x,y) Œ [1,n]2k.

More formally, let u,v Œ {1,2,3,...}p. We say that u,v are
order equivalent if and only if for all 1 £ i,j £ p,

ui < uj iff vi < vj.

Let G be a digraph on [1,n]k. We say that G is order
invariant if and only if the following holds. For all
x,y,z,w Œ [1,n]k, if (x,y) and (z,w) are order equivalent
(as 2k tuples), then

(x,y) Œ E(G) ´ (z,w) Œ E(G).

Note that an order invariant digraph on [1,n]k is completely
determined, among digraphs on [1,n]k, by its subdigraph
induced by [1,2k]k - regardless of how large n is. Thus the
number of order invariant digraphs on [1,n]k is bounded by
(2k)k.

Let G be a digraph and A,B Õ V(G). We say that A,B are G
isomorphic if and only if the subdigraph of G induced by A
is isomorphic to the subdigraph of G induced by B. I.e.,
there is a bijection h:A Æ B such that for all x,y Œ A,

(x,y) Œ E(G) ´ (hx,hy) Œ E(G).

Let m be a positive integer. A power of m is a number mi,
where i is a nonnegative integer.

A vector power of m is a vector (of any finite length) all
of whose coordinates are powers of m.

We say that c does not appear in a set of vectors if and
only if c is not a coordinate of any vector in that set.

PROPOSITION A. For all n,k,r ≥ 1, every order invariant
upgraph G on [1,n]k has an independent set A such that every
£ r element subset of V(G)\A is G isomorphic to a subset of
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GA, with the same vector powers of 2, in which the integer
2(4kr)^2 - 1 does not appear.

Here is a weakening of Proposition A where only a single
vector is excluded.

PROPOSITION B. For all n,k,r ≥ 1, every order invariant
upgraph G on [1,n]k has an independent set A such that every
r element subset of V(G)\A is G isomorphic to a subset of
GA, with the same vector powers of 2, in which the diagonal
vector (2(4kr)^2 - 1,..., 2(4kr)^2 - 1) does not appear.

Here are two alternative Propositions.

PROPOSITION C. For all n,k,r ≥ 1, every order invariant
upgraph G on [1,n]k has an independent set A such that every
£ r element subset of V(G)\A is G isomorphic to a subset of
GA, with the same vector powers of (8kr)!, in which the
integer (8kr)!-1 does not appear.

PROPOSITION D. For all n,k,r ≥ 1, every order invariant
upgraph G on [1,n]k has an independent set A such that every
r element subset of V(G)\A is G isomorphic to a subset of
GA, with the same vector powers of 2, in which the diagonal
vector ((8kr)!-1,..., (8kr)!-1) does not appear.

Propositions A-D can be proved with large cardinals but not
in ZFC (assuming ZFC is consistent). Note that Propositions
A-D are explicitly P01.

Note that if we remove the exclusionary clauses in
Propositions A-D, then we obtain trivial consequences of
the Complementation Theorem (finite upgraphs), which is
provable in EFA (exponential function arithmetic). What a
difference a single integer or vector makes!

Here is more detailed information.

Let MAH = ZFC + {there exists a strongly n-Mahlo cardinal}n.

Let MAH+ = ZFC + “for all n there exists a strongly n-Mahlo
cardinal”.

THEOREM 1. MAH+ proves Propositions A-D. However, none of
Propositions A-D are provable in any consistent fragment of
MAH that derives Z = Zermelo set theory. In particular,
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none of Propositions A-D are provable in ZFC, provided ZFC
is consistent. These facts are provable in RCA0.

THEOREM 2. EFA + Con(MAH) proves Propositions A-D.

THEOREM 3. It is provable in ACA that Propositions A-D are
each equivalent to Con(MAH).


