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FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

There has evolved, for good reason, a specific set of 
axioms and rules for mathematics, called ZFC = Zermelo 
Frankel set theory with the axiom of choice.

This system is massive overkill for the vast bulk of 
mathematical purposes.  

However, when we probe deeper, there are some issues. 

But how interesting are these issues from YOUR point of 
view?

They are getting more interesting. 

How interesting? Well, I have about an hour to say.



FOUNDATIONS OF MATHEMATICS 
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? If NOT, it is 
(generally regarded to be) worthless. 

ISSUE #2. Does anything escape the grasp of ZFC?

ISSUE #3. Does anything interesting to YOU escape the 
grasp of ZFC?

WITH REGARD TO ISSUE #1: Kurt Gödel proved the following.

“ZFC IS CONSISTENT” IS NOT PROVABLE IN ZFC - unless ZFC 
is inconsistent. 

It is generally accepted that ZFC is consistent. But what 
if ZFC turned out to be inconsistent?

Since ZFC is so enormous, we would move to a less 
enormous fragment of ZFC - like ZC - and make a stand 
there. 



FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? 
ISSUE #2. Does anything escape the grasp of ZFC?
ISSUE #3. Does anything interesting to YOU escape the 
grasp of ZFC?

So “ZFC is consistent” escapes the grasp of ZFC. 

BUT you are a mathematician, not a philosopher, not a 
logician. You don’t work in foundations of mathematics. 

So YOU don’t care about “ZFC is consistent”. YOU care 
about math.

So is there anything mathematically interesting that 
escapes the grasp of ZFC?                                                                                                                                                       



FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? 
ISSUE #2. Does anything escape the grasp of ZFC?
ISSUE #3. Does anything interesting to YOU escape the grasp of ZFC?  

Here is the first example of a mathematical assertion 
that escapes the grasp of ZFC.

CH (continuum hypothesis). Every infinite set of real 
numbers is in one-one correspondence with the set of 
integers or the set of real numbers.

GODEL (1930s). ZFC does not refute CH.

COHEN (1960s). ZFC does not prove CH.

Splashy, but by now, YOU are no longer interested in the 
continuum hypothesis. Why?



FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? 
ISSUE #2. Does anything escape the grasp of ZFC?
ISSUE #3. Does anything interesting to YOU escape the grasp of ZFC?

CH (continuum hypothesis). Every infinite set of real 
numbers is in one-one correspondence with the set of 
integers or the set of real numbers.

Why are you no longer interested in CH?

Because YOUR sets of real numbers are very, or at least, 
quite reasonable. YOU naturally move on to 

REASONABLE CH. Every reasonable infinite set of real 
numbers is in one-one correspondence with the set of 
integers or the set of real numbers.

REASONABLE CH can be proved in ZFC! E.g., 



FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? 
ISSUE #2. Does anything escape the grasp of ZFC?
ISSUE #3. Does anything interesting to YOU escape the grasp of ZFC?

REASONABLE CH. Every reasonable infinite set of real 
numbers is in one-one correspondence with the set of 
integers or the set of real numbers.

BOREL CH. Every Borel measurable infinite set of real 
numbers is in Borel one-one correspondence with the set 
of integers or the set of real numbers. 

Borel CH is a classic theorem (Polish school). 

Aha!, you say. CH escaped ZFC because of the 
pathological objects involved!! 

Maybe all of this Incompleteness nonsense is essentially 
fraudulent? If you stuff your mathematics with 
obnoxious, irrelevant, and unwanted pathological 
generalities, then you run into trouble. 



FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? 
ISSUE #2. Does anything escape the grasp of ZFC?
ISSUE #3. Does anything interesting to YOU escape the grasp of ZFC?

So it appears, maybe, that in order to escape the grasp 
of ZFC, with something looking anything like regular 
mathematics, you have to be using alarming amounts of 
generality - generality that admits (unwanted) 
pathology.

GENERAL SOLUTION TO FOUNDATIONS(?). Just stay within a 
reasonable category of mathematical objects, and ask 
mathematically sensible questions, stay away from 
logical issues, and the foundational issues are resolved 
once and for all - by ZFC!



FOUNDATIONS OF MATHEMATICS
IN HEADLINE FORM

ISSUE #1. Is ZFC free of contradiction? 
ISSUE #2. Does anything escape the grasp of ZFC?
ISSUE #3. Does anything interesting to YOU escape the grasp of ZFC? 

In other words, the answer to Issue #3 is NO - 
because if it is beyond ZFC, then 

i. it is not mathematics (maybe its logic); or 
ii. it is mathematics, but riddled with pathological 
objects.

Even the Borel measurable - which appears to be safe, 
could be cut back, if it turned out to be dangerous - 
since even the Borel measurable is way way way more than 
what YOU care about.

NOT SO FAST...



SOME ADVANCED UNDERGRAD MATH

EVERY SET OF ORDERED PAIRS CONTAINS A MAXIMAL SQUARE.

Let’s make sure there is no misunderstanding. 

Let R be a set of ordered pairs from anywhere. Among 
the A × A ⊆ R, there is a maximal one under inclusion.

Now this is a very general statement, and because of 
its great generality, the proof requires the axiom of 
choice. In fact the statement is outright equivalent 
to the axiom of choice.

Since I am joining YOU in hating pathology, I only 
care about this statement if the set of ordered pairs 
is countable.



SOME ADVANCED UNDERGRAD MATH

EVERY COUNTABLE SET OF ORDERED PAIRS CONTAINS 
A MAXIMAL SQUARE.

In order to stir up the undergraduate in YOU, here is 
what you do. Let R be a subset of K × K, where K = 
{x1,x2,...}. 

We define a tower of finite sets Ai, i ≥ 1, as 
follows. Suppose Ai has been defined so that Ai ⊆ 
{x1,...,xi} and Ai x Ai ⊆ R. 

Set Ai+1 = Ai ∪ {xi+1} if Ai+1 × Ai+1 ⊆ R; Ai otherwise.   

Then A × A is a maximal square in S, where A is the 
union of the A’s.



SOME ADVANCED UNDERGRAD MATH

EVERY COUNTABLE SET OF ORDERED PAIRS CONTAINS 
A MAXIMAL SQUARE.

We are going to put invariance conditions on the given 
set of ordered pairs, and an invariance condition on the 
maximal square.

In order to use invariance conditions, we need to have 
some structure. Let Q be the set of all rationals.

EVERY SUBSET OF Q2k CONTAINS A MAXIMAL SQUARE.

So far, this is trivially the same statement.

But the Qk have enough structure to support interesting 
notions of invariance. 

We also use Q[0,n]k, where Q[0,n] = Q ∩ [0,n].



INVARIANCE IN RATIONAL VECTORS 

EVERY SUBSET OF Q2k CONTAINS A MAXIMAL SQUARE.

Here is where we are headed.

EVERY INVARIANT SUBSET OF Q2k CONTAINS AN INVARIANT’ 
MAXIMAL SQUARE.

We will be using two specific invariance conditions on 
subsets of Q2k for the above statement. 

We also work with 

EVERY INVARIANT SUBSET OF Q[0,n]2k CONTAINS AN 
INVARIANT’ MAXIMAL SQUARE.

EVERY INVARIANT SUBSET OF Q[0,16]32 CONTAINS AN 
INVARIANT’ MAXIMAL SQUARE.



INVARIANCE IN RATIONAL VECTORS 
EVERY SUBSET OF Q2k CONTAINS A MAXIMAL SQUARE.

EVERY INVARIANT SUBSET OF Q2k CONTAINS AN INVARIANT’ MAXIMAL SQUARE.

EVERY INVARIANT SUBSET OF Q[0,n]2k CONTAINS AN INVARIANT’ MAXIMAL 
SQUARE.

EVERY INVARIANT SUBSET OF Q[0,16]32 CONTAINS AN INVARIANT’ MAXIMAL 
SQUARE.

We can prove the latter three statements using strong 
Axioms of Infinity that go well beyond ZFC. 

In the case of the latter two statements, we know that 
ZFC does not suffice. This is open for the second 
statement.



GENERAL SETUP FOR INVARIANCE 

Let K be an ambient space anywhere. (We will be using 
the various Qk, Q[0,n]k as ambient spaces).

Let E be an equivalence relation anywhere. Let T be a 
function anywhere.

S ⊆ K is E invariant. For all E equivalent x,y ∈ K, x ∈ 
S ⇒ y ∈ S. 

S ⊆ K is T invariant. For all x,T(x) ∈ K, x ∈ S ⇒ T(x) ∈ 

S.

S ⊆ K is completely T invariant. For all x,T(x) ∈ K, x ∈ 
S ⇔ T(x) ∈ S. 

Because E is symmetric, the ⇒ in the first notion can be
automatically strengthened to ⇔.



SPECIFIC RELATIONS AND 
FUNCTIONS ON Q* 

Q* is the set of all finite sequences of rationals.

ORDER EQUIVALENCE ON Q* 

lth(x) = lth(y). For all 1 ≤ i,j ≤ lth(x), xi < xj ⇔ 
yi < yj. 

Ex: (9,-1/2,8), (3,1,5/2) are order equivalent.

LIFTING FUNCTION Z+↑ FROM Q* INTO Q*

Z+↑(x) is the result of adding 1 to all coordinates 
greater than all coordinates outside Z+.

Ex: Z+↑(-1,0,1,3/2,3,5) = (-1,0,1,3/2,4,6).



SPECIFIC RELATIONS AND 
FUNCTIONS ON Q* 
ORDER EQUIVALENCE ON Q* 

Ex: (9,-1/2,8), (3,1,5/2) are order equivalent.

LIFTING FUNCTION Z+↑ FROM Q* INTO Q*

Ex: Z+↑(-1,0,1,3/2,3,5) = (-1,0,1,3/2,4,6).

UPPER INTEGRAL EQUIVALENCE ON Q*

x,y are upper integral equivalent if and only if 

x,y are order equivalent, and 

for all i, if xi ≠ yi then every xj ≥ xi lies in Z+, 
and every yj ≥ yi lies in Z+.

Ex: (-1,0,1,3/2,3,5), (-1,0,1,3/2,2,87) are upper 
integral equivalent.



SPECIFIC RELATIONS AND 
FUNCTIONS ON Q* 
ORDER EQUIVALENCE ON Q* 

Ex: (9,-1/2,8), (3,1,5/2) are order equivalent.

LIFTING FUNCTION Z+↑ FROM Q* INTO Q*

Ex: Z+↑(-1,0,1,3/2,3,5) = (-1,0,1,3/2,4,6).

UPPER INTEGRAL EQUIVALENCE ON Q*

Ex: (-1,0,1,3/2,3,5), (-1,0,1,3/2,2,87) are upper integral equivalent.

We will use 

ORDER INVARIANT S ⊆ Qk (S ⊆ Q[0,n]k)

COMPLETELY Z+↑ INVARIANT S ⊆ Qk (S ⊆ Q[0,n]k)

UPPER INTEGRAL INVARIANT S ⊆ Qk (S ⊆ Q[0,n]k)



THE STATEMENTS 

EVERY SUBSET OF Q2k CONTAINS A MAXIMAL SQUARE.

EVERY ORDER INVARIANT SUBSET OF Q2k CONTAINS A 

COMPLETELY Z+↑ INVARIANT MAXIMAL SQUARE.

EVERY ORDER INVARIANT SUBSET OF Q2k CONTAINS AN UPPER 
INTEGRAL INVARIANT MAXIMAL SQUARE.

EVERY ORDER INVARIANT SUBSET OF Q[0,16]32 CONTAINS A 

COMPLETELY Z+↑ INVARIANT MAXIMAL SQUARE.

EVERY ORDER INVARIANT SUBSET OF Q[0,16]32 CONTAINS AN 
UPPER INTEGRAL INVARIANT MAXIMAL SQUARE.

I use much more than ZFC to prove 2-5. This is 
required for 4,5. For 2,3, not yet clear if required.

Upper Integral Invariance is the strongest invariance 
notion that can be used, that satisfies some basic 
conditions.  



DETACHED CHOICE 

Let’s go back to the beginning, and use a function 
instead of a square.

EVERY SET OF ORDERED PAIRS CONTAINS A MAXIMAL SQUARE.

EVERY REFLEXIVE SYMMETRIC RELATION HAS A DETACHED 
CHOICE FUNCTION.
 
Let R be a relation (set of ordered pairs). A detached 
choice function F for R obeys 

i. For all x ∈ dom(R), R(x,F(x)).
ii. For all distinct x,y ∈ rng(F), ¬R(x,y).

Let R be reflexive and symmetric on A. Take a maximal S 
such that no two distinct elements of S are R related. 
For x ∈ S, define F(x) = x. For x ∈ A\S, define F(x) ∈ A 
so that R(x,F(x)) and F(x) in A. 

Note that F is a detached choice function for R.  



DETACHED CHOICE STATEMENTS

EVERY REFLEXIVE SYMMETRIC RELATION ON Qk HAS A 
DETACHED CHOICE FUNCTION.
 
EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON Qk 

HAS A COMPLETELY Z+↑ INVARIANT DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON Qk 
HAS AN UPPER INTEGRAL INVARIANT DETACHED CHOICE 
FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 

Q[0,16]16 HAS A COMPLETELY Z+↑ INVARIANT DETACHED CHOICE 
FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
Q[0,16]16 HAS AN UPPER INTEGRAL INVARIANT DETACHED CHOICE 
FUNCTION.

A function is ... Invariant iff its graph is.

2-5 proved using much more than ZFC. Required for 4-5.



DETACHED CHOICE STATEMENTS
EVERY REFLEXIVE SYMMETRIC RELATION ON Qk HAS A DETACHED CHOICE FUNCTION.
 
EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON Qk HAS A COMPLETELY 
Z+↑ INVARIANT DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON Qk HAS AN UPPER 
INTEGRAL INVARIANT DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
Q[0,16]16 HAS A COMPLETELY Z+↑ INVARIANT DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
Q[0,16]16 HAS AN UPPER INTEGRAL INVARIANT DETACHED CHOICE FUNCTION.

Can we move this show into the positive integers? 

Maybe even to {1,...,16t}16, where t,2t,...,16t are 
distinguished?

What would the lifting look like here? What would upper 
integral invariance look like here?



DETACHED CHOICE IN 
{1,...,16t}16 

We will treat t,2t,...,16t as distinguished.

We use the lifting function tZ+↑:Z+* → Z+* given by:
tZ+↑(x) is the result of adding t to all coordinates 
greater than all coordinates outside tZ+. 

THESE BELOW ARE WRONG!

LET t >> 1. EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC 

RELATION ON {1,...,16t}16 HAS A COMPLETELY tZ+↑ INVARIANT 
DETACHED CHOICE FUNCTION.

Let t >> 1. EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC 
RELATION ON {1,...,16t}16 HAS AN UPPER tZ+ INVARIANT 
DETACHED CHOICE FUNCTION.

We must weaken “detached”!!



DETACHED CHOICE IN 
{1,...,16t}16 
THESE BELOW ARE WRONG!

LET t >> 1. EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
{1,...,16t}16 HAS A COMPLETELY tZ+↑ INVARIANT DETACHED CHOICE FUNCTION.

Let t >> 1. EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
{1,...,16t}16 HAS AN UPPER tZ+ INVARIANT DETACHED CHOICE FUNCTION.

We must weaken “detached”!!

RECALL: F is detached iff no two distinct values of F 
are related. 

F is r-detached iff no two distinct values of F are 
related, provided each is written with at most r 
applications of coordinate functions of F, and t,2t,...,
16t. 

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 

{1,...,16t}16 HAS A COMPLETELY tZ+↑ INVARIANT 
log(t)/1000-DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
{1,...,16t}16 HAS AN UPPER tZ+ INVARIANT 
log(t)/1000-DETACHED CHOICE FUNCTION.



DETACHED CHOICE IN 
{1,...,16t}16 

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 

{1,...,16t}16 HAS A COMPLETELY tZ+↑ INVARIANT 
log(t)/1000-DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
{1,...,16t}16 HAS AN UPPER tZ+ INVARIANT 
log(t)/1000-DETACHED CHOICE FUNCTION.

We can prove these by going well beyond ZFC - and not 
otherwise. 

In fact, these two statements are each provably 
equivalent to the consistency of certain large cardinal 
hypotheses.



DETACHED CHOICE IN 
{1,...,16t}16 

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 

{1,...,16(100!!!!!!)}16 HAS A COMPLETELY 100!!!!Z+↑ 
INVARIANT 100!!!!-DETACHED CHOICE FUNCTION.

EVERY ORDER INVARIANT REFLEXIVE SYMMETRIC RELATION ON 
{1,...,16(100!!!!!!)}16 HAS AN UPPER 100!!!!Z+ INVARIANT 
100!!!!-DETACHED CHOICE FUNCTION.

PRESUMABLY -

These can be proved in ZFC, but only 
by using more than 100!! symbols. 



WHAT IS BEING USED BEYOND ZFC?

Just beyond ZFC is a strongly inaccessible cardinal, 
which corresponds to Grothendieck universes (big kind).

κ is a strong limit cardinal if and only if for all κ’ < 
κ, 2κ’ < κ. 

κ is a strongly inaccessible cardinal if and only if 

i. κ is a strong limit cardinal.
ii. κ is not the supremum of a set of cardinals < κ of 
cardinality < κ.
iii. κ is uncountable.



WHAT IS BEING USED BEYOND ZFC?

The ones used (and needed) here are a lot bigger than 
the first strongly inaccessible cardinal. 

We think of each cardinal as an ordinal. Each ordinal is 
the set of all smaller ordinals. 

Let κ be an infinite cardinal. We say that A ⊆ κ is 
closed if and only if the sup of any nonempty bounded 
subset of A without a maximum element, is an element of 
A.

We say that A ⊆ κ is stationary if and only if A meets 
every closed unbounded subset of κ.

We say that κ has the k-SRP if and only if for any 
partition of the unordered k-tuples from κ into two 
pieces, there is a stationary subset of k whose 
unordered k-tuples all lie in one piece.

We use 

for all 1 ≤ k < ∞, some cardinal has the k-SRP.



HOW ARE THESE STATEMENTS PROVED?

We will give a rough sketch of 

EVERY ORDER INVARIANT SUBSET OF Q[0,n]2k CONTAINS AN 
UPPER INTEGRAL INVARIANT MAXIMAL SQUARE.

Let κ be a suitable large cardinal. Let R be an 
invariant subset of Q[0,n]2k. 

There is a canonical lifting of R to the k-tuples from 
any linear ordering. We use <* = κ × Q[0,1) ordered 
lexicographically. 

We lift R to R* on (κ × Q[0,1))2k.

We now want to build a maximal square S × S ⊆ R*.

We construct S by transfinite induction along (κ × 
Q[0,1))2k. The problem is that (κ × Q[0,1))2k is not 
well ordered. 

So we modify the ordering, temporarily, by using an 
enumeration of Q[0,1). 



HOW ARE THESE STATEMENTS PROVED?
EVERY ORDER INVARIANT SUBSET OF Q[0,n]2k CONTAINS AN UPPER INTEGRAL 
INVARIANT MAXIMAL SQUARE.

Let k be a suitable large cardinal, and R be as given. We lift R to R* 
on (κ × Q[0,1))2k.

We construct S by transfinite induction along (κ × Q[0,1))2k. 
Temporarily, we use an enumeration of Q[0,1). 

We need to focus on a crucial closed and well ordered 
subset of κ × Q[0,1). This is κ × {0}. 

Using combinatorics of κ, we obtain an infinite sequence 

λ1 < λ2 < ... < κ, where (λ1,0) <* (λ2,0) <* ... can be 
moved around a lot in the maximal square S × S. 

Focus on ([(0,0),(λn,0)],<*,S,(0,0),(λ1,0),...,(λn,0)). 
This is much too large, but behaves exactly how we want 
(Q[0,n],<,S’,0,...,n) to behave, where S’ results from 
transferring S into Q[0,n]. 

The transfer is accomplished by a straightforward 
sequential construction. VERIFY: S’ × S’ is maximal in R 
just like S × S is maximal in R*.



HOW DO WE PROVE THAT THESE STATEMENTS 
ARE NOT PROVABLE IN ZFC?

We assume hypothetically that the statement P is true.

We then go through a complicated process that 
constructs a model of ZFC.

Thus we have a proof, well within ZFC, that 

P ⇒ Con(ZFC).
Now suppose that P is provable in ZFC. Then ZFC proves 
Con(ZFC). By Gödel’s Second Incompleteness Theorem, 
ZFC is inconsistent. 

Thus we have established that P is not provable in 
ZFC, under the (required) assumption that ZFC is 
consistent. 

 


