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I am going to discuss the mathematical meaning of
1. the completeness theorem.
2. the incompleteness theorems.
3. recursively enumerable sets of integers.
4. constructivity.
5. the Ackerman hierarchy.
6. Peano arithmetic.
7. predicativity.
8. Zermelo set theory.
9. ZFC and beyond.

Each of these theorems and concepts arose from very specific
considerations of great general interest in the foundations
of mathematics (f.o.m.). They each serve well defined
purposes in f.o.m. Naturally, the preferred way to formulate
them for mathe-matical logicians is in terms that are close
to their roots in f.o.m.

However, the core mathematician does not come out of the
f.o.m. tradition as does the mathematical logician. Instead,
he/she comes out of the much older arithmetic/
algebraic/geometric (a.a.g.) tradition. The significance of
these theorems and concepts are not readily apparent from the
a.a.g. point of view.

In fact, a full formulation of these theorems and concepts
requires the introduction of rather elaborate structures
which can only be properly appreciated from a distinctly
f.o.m. perspective. In fact, the a.a.g. perspective is of
little help in gaining facil-ity with these elaborate
structures.

So the core mathematician, steeped in a.a.g, is very unlikely
to spend the considerable effort required to understand the
meaning of such theorems and concepts. In wading through
these develop-ments, he/she will not be putting the a.a.g.
perspective to effective use, and will not anticipate any
corresponding proportionate a.a.g. payoff.
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Of course, there is nothing to prevent a core mathematician
from becoming familiar with and being perfectly comfort-able
with the f.o.m. tradition. But for various reasons, this has
become quite rare.

To give a prime example of what I have in mind, most of these
theorems and concepts depend on the syntax and semantics of
so called first order predicate calculus with equality. This
is a rather elaborate structure which, with proper
substantial and detailed discussion, sounds like beautiful
music to the ears of an f.o.m. oriented listener - but more
like painful, long winded noise to many others.

So in this talk, I want to give relatively a.a.g. friendly
presentations of these fundamental theorems and concepts from
f.o.m. I say relatively because I do not attempt to go all
the way here. One can go much further. But I do go far enough
in the direction of a.a.g. friendliness that the mathematical
meaning of these presentations should be apparent to this
audience. Bear in mind that the project of systematically
giving such a.a.g. friendly treatments is, as far I know,
quite new, and raises substantial issues - both technical and
conceptual - about which I know very little at the present
time.

For many of these presenta-tions, in order to be a.a.g.
friendly, I do a certain amount of cheating. For instance,
these presentations may be substantially less general than
usual, even to the point of focusing on only a few
illustrative examples.

1. THE COMPLETENESS THEOREM.

The Gödel completeness theorem for first order predicate
calculus with equality (1928) has a very simple formulation:
every (set of) sentence(s) that is true in all structures has
a proof (in fopce). Of course, this simplicity hides the fact
that there is an elaborate system of defini-tions underneath
that are not a.a.g. friendly.

I start our treatment with equational logic. Let us consider
systems of the form (D,f1,...,fn), where D is a nonempty set,
n ≥ 0, and each fi is a multivariate function from D into D.
We allow the arity of the various fi to be various nonnegative
integers. The significance of arity 0 is that of a constant.
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At the risk of offending most people in the audience, I call
such a system D = (D,f1,...,fn) an algebra. The type of D is
(k1,...,kn), where ki is the arity of fi.

Ex: Groups. These are certain algebras of type (0,2,1). Here
f1 is the identity element, f2 is the group operation, and f3
is the additive inverse operation.

We build terms using the variables xj, j ≥ 1, and the
functions f1,...,fn. One is normally pedantic, actually using
function symbols F1,...,Fn standing for unknown actual
functions f1,...,fn.

Ex: In the type (0,2,1) of groups, the terms are just the
words. In the type (0,0,2,1,2) of rings, the terms are just
the polynomials with integer coefficients.

An equation s = t between terms is said to hold universally
in an algebra just in case it is true under all assignments
of algebra elements to the variables.

Ex: Groups are the algebras of type (0,2,1) which obey the
usual group axioms universaly. Rings are the algebras of type
(0,0,2,1,2) which obey the usual ring axioms universally.

What does it mean to say that a given equation a follows from
a given set of equations S?

There are two ways to look at this: algebraically and
formally.

Under the algebraic approach, this means that a holds
universally in every algebra where S holds universally (i.e.,
every element of S holds universally).

Under the formal approach, this means that one can derive the
equation a from the set of equations S. But what is a
derivation of a from S?

Just what it means in high school algebra when one first
learns to play around with equations.

It means that there is a finite sequence of equations ending
with a, where each equation either follows from previous
equations by the transitivity and symmetry of equality, or is
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obtained from an earlier equation by replacing variables with
terms in such a way that the equality of all of the terms
replacing the same variable have been previously proved.

THEOREM 1. a follows from S algebraically iff a follows from
S formally.

COROLLARY 2. a follows from S algebraically iff a follows
from some finite subset of S algebraically.

Of course, many algebraic contexts are not strictly
equational; e.g., fields.

This suggests looking at situ-ations that are almost, but not
quite equational. E.g., a and/or some elements of S are
negations of equations. Or implications between equations. Or
implications between conjunctions of equations. Or
disjunctions of equations.

Most generally, both a and all elements of S are of the form

*) a conjunction of equations implies a disjunction of
equations.

The degenerate cases are handled in an obvious manner.

REMARK: finite sets of statements of the form *) have the
same effect as arbitrary combinations involving negation,
disjunction, conjunction, and implication.

Once we go all the way up to *), we have passed from
equational logic to what is called free variable logic.

It would be interesting to see a systematic treatment of
notions of derivation when free variable logic is approached
incrementally from equational logic.

In free variable logic, it is clear what we mean by a follows
from S algebraically. So what does “a follows from S
formally” mean here?

For this general context, the most a.a.g. friendly way to go
is to avoid derivations and use another algebraic notion.
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We say that a follows from T locally algebraically iff for
every algebra D and assignment t to the variables, if all
elements of T are true under t then a is true under t.
The so called substitution instances of a free variable
statement are obtained by replacing identical variables with
identical terms.

THEOREM 3. (Herbrand’s theorem). Let S be a set of free
variable statements and a be a free variable statement. Then
a follows from S algebraically iff a follows from a finite
set of substitution instances of elements of S locally
algebraically.

We can think of this finite set of substitution instances as
a “Herbrand proof” of a from S, and count the number of
occurrences of function symbols as a measure of its size.

COROLLARY 4. (Tarski compactness). Let S be a set of free
variable statements and a be a free variable statement. Then
a follows from S algebraically iff a follows from a finite
subset of S algebraically.

Let S be a set of free vari-able statements. There is an
important process of expanding S through the introduction of
new symbols that goes back to Hilbert with his Œ-calculus. It
amounts to a relatively a.a.g. friendly treatment of
quantifier logic.

Let j(x1,...,xn+1) be any free variable statement that uses
only function symbols appearing in S.

We then introduce a new function symbol F which is n-ary, and
add the free variable statement

j(x1,...,xn+1) Æ j(x1,...,xn,F(x1,...,xn))

to S.

We can repeat this process indefinitely, eventually taking
care of all free variable statements in this way involving
any of the function symbols that eventually get introduced.
Any two ways of doing this are essentially equivalent. We
write the result as S*.

THEOREM 5. Let S be a set of free variable statements. Any
algebra in which S holds universally can be made into an
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algebra in which S* holds universally without changing the
domain and functions of the original algebra.

COROLLARY 6. Let S be a set of free variable statements and a
be a free variable statement using only function symbols
appearing in S. Then a follows from S* algebraically iff a
follows from S algebraically.

We can compare the least size of a Herbrand proof of a from
S* and from S. There is a necessary and sufficient iterated
exponential blowup in passing from S* to S.

This corresponds to the situa-tion with cut elimination in
mathematical logic.

2. THE INCOMPLETENESS THEOREMS.

Gödel’s first incompleteness theorem asserts that in any
consistent recursively axiomatized formal system whose axioms
contain a certain minimal amount of arithmetic, there exist
sentences that are neither provable nor refutable. (This is
actually a sharpening of Gödel’s original theorem due to
Rosser). This can be made more friendly by

1) looking only at systems with finitely many axioms;
2) making the “minimal amount of arithmetic” very friendly.

However, formal systems still remain. So we wish to go
further and capture the mathematical essence without using
formal systems.

To maximize friendliness, we incorporate work of Matiyase-
vich/Robinson/Davis/Putnam on Hilbert’s 10th problem.

THEOREM 7. Let S be a finite set of statements in free
variable logic, including the ring axioms, that hold
universally in some algebra. There is a ring inequation that
holds universally in the ring of integers but does not follow
from S algebraically.

Gödel’s second incompleteness theorem is more delicate than
his first incompleteness theorem.

It asserts that for any consistent recursively axiomatized
formal system whose axioms contain a certain minimal amount
of arithmetic, that system cannot prove its own consistency.
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(This is actually a sharpening of Gödel’s ori-ginal theorem
due to several people).

Again, this can be made more friendly as before by

1) looking only at systems with finitely many axioms;
2) making the “minimal amount of arithmetic” very friendly.

However, formal systems still remain, as well as issues
concerning appropriate formalizations of consistency.
So we go further and capture the mathematical essence without
using formal systems.

For this purpose, we introduce the concept of an interpreta-
tion. This concept, formalized by Tarski, is normally presen-
ted in terms of the first order predicate calculus with
equality.

Here we only use interpretations between sets of free
variable statements. An inter-pretation of S1 into S2 consists
of definitions of the functions of S1 by free variable
statements using the functions of S2 with the property that
the translation of each statement in S1 through these
definitions follows from S2 algebraically.

THEOREM 8. Let S be a finite set of free variable state-ments
which hold universally in some infinite algebra. There exists
a free variable statement j such that S » {j} holds
universally in some infinite algebra but is not interpretable
into S*.

Theorem 8 follows from the second incompleteness theorem. On
the other hand, I don’t see how to derive the second
incompleteness theorem from Theorem 8.

3. RECURSIVELY ENUMERABLE SETS OF INTEGERS.

Recursively enumerable (r.e.) sets of integers occur
throughout math logic. The most common definition is:

There is an algorithm such that S is the set of all integers
n for which the algorithm eventually finishes computation
when applied to n.

This very simple definition of course depends on having a
model of computation. And there is a great deal of robustness
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in that any reasonable model of general computation - without
regard to resource bounds - will yield the same family of
sets of integers.

However, no one at the moment knows a really friendly way of
defining what a “reasonable model of general computation” is.
So for the purposes of a.a.g. friendliness, we avoid models
of computation. We present a known characterization which
comes from the solution to Hilbert’s 10th problem by
Matiyasevich/Robinson/Davis/Putnam 1970.

To begin with, r.e. sets of nonnegative integers are normally
considered rather than of integers. S Õ Z is r.e. iff S « N
and -S « N are r.e. The following is a byproduct of
Matiyasevich/ Robinson/Davis/Putnam.

THEOREM 9. S Õ N is r.e. iff S is the nonnegative part of the
range of a polynomial of several integer variables with
integer coefficients.

From Matiyasevich 1992 con-cerning nine variable Diophantine
representations, one can easily read off the following:

THEOREM 10. S Õ N is r.e. iff S is the nonnegative part of
the range of a polynomial of 13 integer variables with
integer coefficients. 13 can be replaced by higher number.

It is known that 13 cannot be replaced by 2, but can it be
replaced by 3? This is open.

There is virtually no understanding of the nonnegative
(integral) parts of ranges of polynomials of several rational
variables with rational coefficients. It is well known that
they are r.e.

4. CONSTRUCTIVITY.

In mathematical logic, con-structivity is treated in terms of
certain formal sys-tems based on intuitionistic first order
predicate calculus which go back to Heyting. This is
definitely not a.a.g. friendly.

In many general contexts, the existence of a constructive
proof of a theorem implies a sharper form of that theorem.



9

That sharper form may be false or open. Great interest may be
attached to the sharper form, independently of any interest
in the general foundational concept of constructivity.

As a first example, consider the following well known fact:

*) For all polynomials P:Z Æ Z of nonzero degree, there are
finitely many zeros of P.

A constructive proof of *) would imply the also well known
sharper fact:

**) There is an algorithm such that for all polynomials P:Z Æ
Z of nonzero degree, the algorithm applied to P produ-ces an
upper bound on the magnitudes of all zeros of P.

This can be seen to be a special case of the following
general principle.

Suppose that there exists a constructive proof of a statement
of the form

("n Œ Z)($m Œ Z)(R(n,m)).

Then there exists an algorithm a such that

("n Œ Z)(R(n,a(n))).

Now consider the obvious statement

#) For all multivariate polynomials P from Z into Z, $ a
value of P whose magnitude is as small as possible.

If #) has a constructive proof then the following sharper
statement must hold:

##) There is an algorithm such that for all multivariate
polynomials P from Z into Z, the algorithm applied to P
produces a value of P whose magnitude is as small as
possible.

But using Matiyasevich/Robinson/Davis/Putnam, one can refute
##). Hence #) has no constructive proof.

There are important examples in number theory where the
constructivity is not known. E.g., in Roth’s theorem about
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rational approximations to irrational algebraic numbers, and
Falting’s solution to Mordell’s conjecture.

5. THE ACKERMAN HIERARCHY.

This is a basic hierarchy of functions from Z+ into Z+ with
extraordinary rates of growth. Yet these rates of growth
occur naturally in a number of basic mathematical contexts
including the Bolzano Weierstraas theorem and walks in
lattice points.

Let f:Z+ Æ Z+ be strictly increasing. We define f#:Z+ Æ Z+ by
f#(n) = ff...f(1), where there are n f’s.

We define the Ackerman hierarchy as follows. Take f1:Z
+ Æ Z+

to be doubling. Take fk+1:Z
+ Æ Z+ to be (fk)#.

Note that f2 is base 2 exponentiation, and f3 is base 2
superexponentiation.

BW THEOREM. Let x[1],x[2],... be an infinite sequence from
the closed unit interval [0,1]. There exists k1 < k2 < ...
such that the subsequence x[k1],x[k2],... converges.

BW WITH ESTIMATE. Let x[1], x[2],... be an infinite sequence
from the closed unit interval [0,1]. There exists k1 < k2 <
... such that |x[ki+1]-x[ki]| < 1/ki-1

2, i ≥ 2.

THEOREM 11. Let r >> n ≥ 1 and x[1],...,x[r] Œ [0,1]. There
exists k1 < ... < kn such that |x[ki+1]-x[ki]| < 1/ki-1

2, 2 £ i
£ n.

In the r >> n above, how large must r be relative to n? If n
= 11 then r > f3(64) = an exponential stack of 64 2’s. fn-
8(64) < r(n) < fn+c(n+c), for some universal c, n ≥ 10. In
fact, it is outrageous earlier than n = 11. We are looking to
see just when.

Let k ≥ 1. A walk in Nk is a finite or infinite sequence
x1,x2,... Œ Nk such that the Euclidean distance between
successive terms is exactly 1.

A self avoiding walk in Nk is a walk in Nk in which no term
repeats.
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Let x,y Œ Nk. We say that x points outward to y iff for all 1
≤ i ≤ k, xi £ yi.

THEOREM 12. Let x Œ Nk. In every sufficiently long finite
self avoiding walk in Nk starting at x, some term points
outward to a later term which is at least twice the Euclidean
distance from the origin.

Now let W(x) be the least n such that:

*in every self avoiding walk in Nk of length n starting at x,
some term points outward to a later term which is at least
twice the Euclidean distance from the origin*

THEOREM 13. W(2,2,2) ≥ 2192,938,011. W(1,1,1,1) ≥
E*(102,938,011). $c,d > 0 such that "k,n ≥ 1, A(k,n+c) £
W(n,...,n) £ A(k,n+d), where there are k n’s.

6. BLOCK SUBSEQUENCES.

For each k ≥ 1, let n(k) be the length of the longest finite
sequence x1,...,xn such that no consecutive block

xi,...,x2i

is a subsequence of any other consecutive block

xj,...,x2j.

THEOREM 14. For all k ≥ 1, n(k) exists.

BRAIN DEAD: n(1) = 3.

GIFTED HIGH SCHOOL: n(2) = 11.

What about n(3)??  n(3) approx. 60? n(3) approx. 100? n(3)
approx. 200? n(3) approx. 300?

Bad estimates. E.g., n(3) > 2^2^2^2^2^2^2^2^2^2^2^2^2^2^2.

In fact, n(3) > an exponential stack of 2's of length the
above number.

A better lower bound: n(3) > the 7198-th level of the
Ackerman hierarchy at 158,386.
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What about n(4)?? Let A(n) be the n-th level of the Ackerman
hierarchy at n.

THEOREM 15. n(4) > AA...A(1), where there are A(187196) A's.

Now that is a big number.

7. PEANO ARITHMETIC.

Peano arithmetic (PA) is a very fundamental system for f.o.m.
It is the formal system that Gödel used to cast his
incompleteness theorems.

Here we give an example of what PA cannot handle. The first
appropriate example of a genuinely combinatorial nature is
Paris/Harrington 1977. Here is a more state of the art
example. Below we use | | for the sup norm.

THEROEM 16. Let n >> k ≥ 1 and  F:[0,n]k Æ [0,n]k obey |f(x)|
£ |x|. There exist x1 < ... < xk+1 such that F(x1,...,xk) £
F(x2,...,xk+1) coordinatewise. This cannot be proved in PA.

8. PREDICATIVITY.

Predicativity is the view that it is illegitimate to form a
set of integers obeying a property that involves all
sets of integers. One is allowed to form sets of integers
only through definitions that involve sets of integers that
have been previously formed. This view was attrac-tive to
Poincare and Weyl and others.

A modification of this view:

impredicativity is useful for normal mathematics only for the
purpose of proving the existence of infinite sets of integers
of a problematic character.

In this form, the view is demonstrably false, as witnessed
by, say, J.B. Kruskal’s tree theorem 1960:

KRUSKAL’S THEOREM. Let T1,T2,... be finite trees. There exists
i < j such that Ti is continuously embeddable into Tj as
topological spaces.
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(Continuous embeddability of finite trees is a purely
combinatorial notion, involving only the vertices and the
edge relation.)

Kruskal’s proof is blatantly impredicative. Results from
mathematical logic show that under the usual formalizations
of predicativity, there is no predicative proof of Kruskal’s
Theorem.

Here is a modified view:

impredicativity cannot be used for proving normal
mathematical theorems that involve only finite objects.

Here is a refutation of this.

THEOREM 17. Let T be a sufficiently tall rooted finite tree
of bounded valence (splitting). There is an inf preserving
embedding of some truncation of T into a taller truncation of
T which sends the highest vertices of the former into the
highest vertices of the latter.

Results from math logic again show that there is no predica-
tive proof of this finite version of Kruskal’s Theorem.

9. ZERMELO SET THEORY.

Zermelo set theory with the axiom of choice, ZC, is a very
powerful fragment of the usual axioms and rules of
mathematics (ZFC), and is far more than what is needed to
formalize nearly all of existing normal mathematics. ZC
consists of the axioms of exten-sionality, pairing, union,
separation (comprehension), infinity, power set, and choice.

We now give an example of a uniformization theorem from
normal real analysis that cannot be proved in ZC. It can,
however, be proved in ZFC, using the Replacement axiom.

THEOREM 18. (using D.A. Martin). Let E be a Borel measurable
subset of the ordinary unit square which is symmetric about
the diagonal. Then E contains or is disjoint from the graph
of a Borel measurable function from the unit interval into
itself.

10. ZFC AND BEYOND.
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Are there examples of discrete or even finite normal mathe-
matics which cannot be carried out within the usual axioms
and rules of mathematics as formalized by ZFC?

This question naturally arises since even ZC is overkill for
nearly all normal mathematical contexts.

There is ongoing work suggesting that not only are there such
examples, but that there is a new thematic subject which cuts
across nearly all mathematical contexts, readily digestible
at the undergraduate mathematics level, but which can be
properly carried out with and only with the use of certain
previously proposed new axioms for mathematics going under
the name of “large cardinal axioms.”

However, it would be premature for me to report on this work
with any specificity at this important gathering, and so I
will end this lecture at this time. Thank you very much.


