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AND, OR, NOT

We start with one common way of connecting sentences. 

Suppose I tell you 

Mike is a wibel AND 
Jane is a zibel 

I don't know about you, but I don't know what this means! 
But there is something about this sentence that we do know.

This sentence, taken as a whole, is true or false according 
to whether its two constituents are true or false.  

AND is an example of a logical connective. 

OR, NOT are also examples of logical connectives:



AND, OR, NOT

Mike is a wibel OR 
Jane is a zibel 

Again, this sentence, taken as a whole, is true or false 
according to whether its two constituents are true or false.

Mike is not a wibel

This sentence, taken as a whole, is true or false according 
to whether its one constituent is true or false. 

What is the rule that determines the truth value of these 
three example sentences in terms of the truth values of 
their constituents?

TRUTH VALUES: T if true; F if false. 



RULES FOR AND, OR, NOT
THE TRUTH TABLES

Using letters for the constituents, we write 

A ∧ B  (A and B)
A ∨ B  (A or B)
¬A  (not A)

There are four possibilities for A,B.

A  B  A ∧ B  A ∨ B  ¬A
T  T  T      T      F
T  F  F      T      F
F  T  F      T      T
F  F  F      F      T



LOGICAL EQUIVALENCE: REDUCING CONNECTIVES

Two formulas are logically equivalent (written ≡) 
if and only if they have the same truth values under the same 
assignments of truth values to their aggregate letters. E.g., 

(A ∧ B)  ≡  (B ∧ A) ∨ (C ∧ ¬C)

It is also easy to check that 

A ∨ B  ≡  ¬(¬A ∧ ¬B)
A ∧ B  ≡  ¬(¬A ∨ ¬B)

CHALLENGE. Every propositional formula in ¬,∨ is logically 
equivalent to one in ¬,∧. Every propositional formula in ¬,∧ 
is logically equivalent to one in ¬,∨. (Use induction).



COMPLETENESS OF CONNECTIVE SETS

We have been using the connective set ¬,∧,∨. This set is 
logically complete in the following sense. 

Let S be a set of assignments of truth values to the letters 
A1,...,An, n ≥ 1. There is a propositional formula in 
¬,∧,∨,A1,...,An which has truth value T under exactly the 
assignments in S. 

Because of the reductions from the last page, we conclude that 
the connective sets {¬,∨} and {¬,∧} are also complete.

The connective set {∨,∧} is not complete because every 
propositional formula in {∨,∧,A} is T under some assignment.

CHALLENGE. Verify all of the statements on this page.



MATH NEEDS AND USES MORE CONNECTIVES

Although {¬,∧,∨}, or even {¬,∧},{¬,∨}, is logically complete, 
math needs more connectives to be humanly manageable. The most 
crucial addition is “implies” or “if then”. Also, less 
crucially, “iff” is in common use. 

A  B  A ➞ B  A ↔ B
T  T  T      T
T  F  F      F
F  T  T      F
F  F  T      T

So math uses the five connectives ¬,∧,∨,➞,↔.
 From the above truth table we see that 
(A = T, B = T) and (A = F, B = F) are both satisfiers of both 

A ➞ B and A ↔ B.



SATISFIER OF A COMPLICATED FORMULA

Consider the example formula 

((A ➞ B) ↔ (A ∨ ¬B)) ➞ ((C ∧ ¬D) ∨ (B ↔ ¬E))
(A = T, B = T, C = F, D = T, E = F) is a satisfier of this: 

A  B  C  D  E  A ➞ B  ¬B  A ∨ ¬B  (A ➞ B) ↔ (A ∨ ¬B)          
T  T  F  T  F  T       F   T       T 

¬D  C ∧ ¬D  ¬E  B ↔ ¬E  (C ∧ ¬D) ∨ (B ↔ ¬E) 
F   F        T  T        T                  

((A ➞ B) ↔ (A ∨ ¬B)) ⇒ ((C ∧ ¬D) ∨ (B ↔ ¬E))

T 

This is just one the 25 = 32 rows of its truth table.



MORE REDUCTIONS AND CONNECTIVE 
COMPLETENESS

(A ➞ B) ≡ (¬A ∨ B)

(A ↔ B) ≡ (A ∧ B) ∨ (¬A ∧ ¬B)
(A ∨ B) ≡ (¬A ➞ B)

From previous pages, {¬,∧}, {¬,∨} are logically complete. From 
the last of the above, {¬,➞} is logically complete.

CHALLENGE. Determine which of the 32 subsets of {¬,∧,∨,➞,↔} 
are logically complete.  



TAUTOLOGIES, CONTRADICTIONS 

A ∨ ¬A    A ➞ A    A ↔ A
All three of these come out T for all truth assignments to A. 
A more sophisticated example is 

((A ➞ B) ➞ A) ➞ A 

which comes out T for all truth assignments to A,B. 

A ∧ ¬A    A ↔ ¬A    
comes out F for all truth assignments to A.

A tautology is a propositional formula whose truth value is T 
under all assignments of truth values to its letters. A 
contradiction is a propositional formula whose truth value is 
F under all assignments of truth values to its letters.

 



TAUTOLOGIES
SATISFIABILITY

A propositional formula is satisfiable if and only if it has a 
satisfier. I.e., its truth value is T under some assignment of 
truth values to its letters. 

Life may become very difficult when there are a lot of letters:

(((¬A ↔ B) ∨ (A ➞ ¬C)) ∧ ((B ∨ D) ∨ E)) ➞ (E ∧ ¬¬B)

Here there are 25 = 32 rows in the truth table. 

CHALLENGE. Any way of determining whether propositional 
formulas are tautologies can be easily converted to a way of 
determining whether propositional formulas are satisfiable, and 
vice versa.



SATISFIABILITY
$1,000,000.00

The obvious foolproof method for determining whether a 
propositional formula is satisfiable is by “merely” trying all 
assignments of truth values to the letters. 

This could take an exponential amount of time relative to the 
size of the input formula. 

Can this be done using at most a polynomial amount of time 
relative to the input size? The method is required to work 
flawlessly for all propositional formulas.

A proof of this one way or the other wins a $1,000,000.00 
prize from the Clay Foundation. 



LOGICAL IMPLICATION
LOGICAL EQUIVALENCE

Formula α logically implies formula β if and only if any truth 
assignment to the aggregate of letters making α true, makes β 
true. We write this as α ⇒ β. 
Don’t confuse ⇒ with the connective ➞.

THEOREM. α ⇒ β if and only if α ➞ β is a tautology. 

α ≡ β if and only if α ⇒ β and β ⇒ α. 

α ≡ β if and only if α ↔ β is a tautology. 
THEOREM. ⇒ is reflexive and transitive, but not symmetric. ≡ 
is an equivalence relation (i.e., reflexive, transitive and 
symmetric).

CHALLENGE: Prove these Theorems. 



COMMUTATIVITY, ASSOCIATIVITY, 
DISTRIBUTIVITY

There are some very basic logical equivalences that are like 
those that you see in algebra (with some differences). 

A ∧ B ≡ B ∧ A    A ∨ B ≡ B ∨ A    A ↔ B ≡ B ↔ A

(A ∧ B) ∧ C ≡ A ∧ (B ∧ C)
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C)

(A ↔ B) ↔ C ≡ A ↔ (B ↔ C)

A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)  (like a(b+c) = ab+ac)

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C) (like a+bc = (a+b)(a+c))??
These hold no matter what propositional formulas we substitute 
for the letters A,B,C, so long as we substitute the same 
formulas for the same letters. 



DISJUNCTIVE NORMAL FORM

It is often very convenient to put an arbitrary propositional 
formula in a standard form, that you can more easily work with. 

By associativity and commutativity, we can speak freely of 
“disjunctions of formulas” and of “conjunctions of formulas”. 

A literal is a letter or a negated letter (i.e., ¬Ai). 

A formula is in disjunctive normal form if and only if it is a 
disjunction of formulas, each of which is a conjunction of 
literals. 

THEOREM. Every propositional formula in ¬,∧,∨,➞,↔, is
logically equivalent to a formula in disjunctive normal form. 

CHALLENGE: Prove this. Use satisfiers.



CONJUNCTIVE NORMAL FORM

A formula is in conjunctive normal form if and only if it is a 
conjunction of formulas, each of which is a disjunction of 
literals. 

THEOREM. Every propositional formula in ¬,∧,∨,➞,↔ is 
logically equivalent to a formula in conjunctive normal form. 

CHALLENGE: Prove this. Use satisfiers.



SATISFIABILITY OF INFINITE SETS OF 
PROPOSITIONAL FORMULAS

So far, we have been talking about satisfiability of 
propositional formulas. We now consider satisfiability of sets 
of propositional formulas. This means that there is a single 
assignment of truth values (i.e.,a satisfier) that makes all 
propositional formulas in the set true. 

We will assume the fixed alphabet of distinct letters 
A1,A2,A3,... for use in propositional formulas. 

The satisfiers consist of the assignments of truth values to 
all of the letters A1,A2,A3,... . Thus satisfiers may assign 
truth values to letters that do not occur in the set of 
propositional formulas. This is very convenient, and clearly 
does not affect satisfiability.



COMPACTNESS THEOREM - PROOF
COMPACTNESS THEOREM. A set S of propositional formulas is 
satisfiable if and only if every finite subset of S is 
satisfiable.

For this interesting proof, assume that every finite subset 
of S is satisfiable. We want to show that S is satisfiable.

Every finite subset of S has a satisfier which assigns T to 
A1, or every finite subset of S has a satisfier which 
assigns F to A1. 

CHALLENGE: Prove this claim. Assume the claim is false, and 
derive a contradiction. (You MUST use proof by contradiction 
here!).

This gives us a “partial satisfier” f1 that assigns only to 
A1. Every finite subset of S has a satisfier extending f1. 



COMPACTNESS THEOREM - PROOF
Every finite subset of S has a satisfier extending f1. 

We claim that every finite subset of S has a satisfier 
extending f1 that assigns T to A2, or every finite subset of S 
has a satisfier extending f1 that assigns F to A2. 

CHALLENGE: Prove this claim. As before, assume the claim is 
false, and derive a contradiction. (You MUST use proof by 
contradiction here!).

This gives us a partial satisfier f2 extending f1, which 
assigns only to A1,A2. Every finite subset of S has a 
satisfier extending f2.

Continue in this way, obtaining an infinite series of 
growing partial satisfiers. The union of all of these 
partial satisfiers gives us a satisfier for all of S. WHY? 
 



LOGICAL IMPLICATIONS

We now consider logical implications of infinite sets of 
propositional formulas. 

Let K be a set of propositional formulas, and A be a

propositional formula (all in ¬,∧,∨,➞,↔). We say that K 
logically implies A if and only if every satisfier of K is a 
satisfier of A. We write K ⇒ A. 

THEOREM. Let K,A be as above. If K ⇒ A, then for some finite 
subset K0 of K, K0 ⇒ A.  
Suppose K ⇒ A. Then K ∪ {¬A} is not satisfiable. By the 
Compactness Theorem, K0 ∪ {¬A} is not satisfiable, for some 
finite K0 ⊆ K. Therefore K0 logically implies A. WHY? 



AXIOMATIZATION, HILBERT STYLE

It is common in logic to provide axioms and rules of inference 
that yield, exactly, some important class of formulas. There 
are several types of such “formal systems”. 

Here we want to give axioms and rules of inference for proving 
tautologies in some chosen set of connectives.
 
In a Hilbert style axiomatization of propositional logic, we 
choose a finite set of formulas, in some chosen set of 
connectives, as the axioms. We can use the following two rules 
of inference. 

1. Any substitution instance of any axiom is considered 
derived (using only the chosen set of connectives).
2. If formulas α, and α ➞ β have been derived, then β is 
considered derived. (Modus Ponens).     



SOUNDNESS AND COMPLETENESS  

Such a formal system is said to be sound if and only if every 
formula that is derived is a tautology.

Such a formal system is said to be complete if and only if 
every tautology, using the chosen set of connectives, is 
derivable.

There are sound and complete Hilbert systems for ¬,∧,∨,➞,↔. 
They are somewhat cluttered. It is typical to focus on the case 
¬,➞. We can use these formulas as axioms (Elliot Mendelson): 

A ➞ (B ➞ A)
(A ➞ (B ➞ C)) ➞ ((A ➞ B) ➞ (A ➞ C))
(¬A ➞ ¬B) ➞ ((¬A ➞ B) ➞ A)

with SUBSTITUTION for axioms (¬,➞ only), and MODUS PONENS. 



SOUNDNESS AND COMPLETENESS

Mendelson, Introduction to Mathematical Logic, 1979, has a 
proof of the soundness and completeness of the above axiom 
system. Also see List of logic systems, Wikipedia, where it 
cites Jan Lukasiewicz for using a simpler third axiom:

A ➞ (B ➞ A)
(A ➞ (B ➞ C)) ➞ ((A ➞ B) ➞ (A ➞ C))
(¬A ➞ ¬B) ➞ (B ➞ A)

with SUBSTITUTION for axioms (¬,➞ only), and MODUS PONENS.

Soundness asserts that every theorem of the system is a 
tautology. 

CHALLENGE: Prove soundness for these two systems by induction.



COMPLETENESS

Completeness for such systems is much harder, and asserts that 
every tautology is a theorem of the system. First carefully 
define proofs as finite sequences of formulas, each of which 
is either a substitution instance of an axiom, or follows from 
previous entries, in the finite sequence, by Modus Ponens. 

The next step is to extend this to proofs from a set of assumptions. 
Then state and prove the Deduction Property: 

If A can be proved from a set S ∪ {B}, 
then B ➞ A can be proved from S. 

CHALLENGE. Prove the Deduction Property for these two systems. 
Use induction on the length of proofs.

CHALLENGE. Finish the proof of Completeness for these two 
systems. Use satisfiers. 



HILBERT SYSTEM FOR ¬,∧,∨,➞,↔
We incorporate ∧,∨,↔, into the Mendelson system. 
A ➞ (B ➞ A)
(A ➞ (B ➞ C)) ➞ ((A ➞ B) ➞ (A ➞ C))
(¬A ➞ ¬B) ➞ ((¬A ➞ B) ➞ A)

(A ↔ B) ➞ (A ➞ B)

(A ↔ B) ➞ (B ➞ A)

(A ↔ B) ➞ ((B ➞ A) ➞ (A ↔ B))

(A ∧ B) ↔ ¬(A ➞ ¬B)

(A ∨ B) ↔ (¬A ➞ B)

with SUBSTITUTION for axioms (using ¬,∧,∨,➞,↔), and MODUS 
PONENS. 



HILBERT SYSTEM FOR ¬,∧,∨,➞,↔
CHALLENGE: Prove soundness for this system. Use induction.

We can prove completeness for the ¬,∧,∨,➞,↔ system assuming 
completeness for the ¬,➞ system.

Let A be a formula in ¬,∧,∨,➞,↔. Let A* result from

replacing all ∧,∨,↔ in A with ¬,➞ in the usual way. 
CHALLENGE. Prove by induction that A and A* are logically 
equivalent.

CHALLENGE. Prove by induction that in the ¬,∧,∨,➞,↔ system, A 
proves A* and A* proves A.

CHALLENGE. Finish the completeness proof for the ¬,∧,∨,➞,↔ 
system.
 


