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1. INFINITE UPPER SHIFT KERNEL THEOREM. 
 
Here we sketch a proof of the Infinite Upper Shift Kernel 
Theorem from a suitable large cardinal assumption. The 
reversal will be available later.  
 
A digraph is a pair G = (V,E), where V is a nonempty set of 
vertices and E ⊆ V2 is a set of edges. We say that G is on 
V.  
 
A kernel in (V,E) is commonly defined in graph theory as a 
set S ⊆ V such that  
 
i. No element of S connects to any element of S. 
ii. Every element of V\S connects to some element of S. 
 
We now fix A ⊆ Q. We study a fundamental class of digraphs 
associated with A, which we call the A-digraphs. An A,k-
digraph is a digraph (Ak,E), where E is an order invariant 
subset of A2k in the following sense. For all x,y ∈ A2k, if 
x,y have the same order type then x ∈ E ↔ y ∈ E.  
 
An A-digraph is an A,k-digraph for some k ≥ 1.  
 
Note that for each A ⊆ Q, there are finitely many A,k-
digraphs.  
 
A downward A-digraph (A,k-digraph) is an A-digraph (A,k-
digraph) where for every edge (x,y), max(x) > max(y).  
 
The upper shift ush:Q → Q is defined by ush(q) = q+1 if q ≥ 
0; q otherwise. This lifts to ush:Qk → Qk by acting 
coordinatewise. We can now use ush to give forward images 
of subsets of Qk. 
 
SRP stands for "stationary Ramsey property". We say that λ 
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has the k-SRP if and only if λ is an infinite cardinal, and 
every f:[λ]k → 2 is constant on some [S]k, where S is a 
stationary subset of λ. Here [S]k is the set of all 
unordered k tuples from S.  
 
INFINITE UPPER SHIFT KERNEL THEOREM. There exists 0 ∈ A ⊆ Q 
such that every downward A-digraph has a kernel containing 
its upper shift. 
 
Note that we are talking about Con(SRP), rather than 1-
Con(SRP). 
 
Also, A ⊆ Q can be taken to be recursive in the jump, as 
well as the sequence of kernels for the A-digraphs.  
 
INFINITE UPPER SHIFT KERNEL THEOREM(k). There exists 0 ∈ A 
⊆ Q such that every downward A,k-digraph has a kernel 
containing its upper shift. 
 
There is a small k such that the Infinite Upper Shift 
Kernel Theorem(k) also has the same metamathematical 
properties. I.e., is also provably equivalent, over ACA0, to 
Con(SRP). Thus we do NOT get a hierarchy on the dimension 
k. 
 
It remains to give a small k. I have been postponing this 
kind of investigation for some time, waiting for the 
independent statements to stabilize.  
 
We will now prove the Infinite Upper Shift Kernel Theorem 
in ACA0 + Con(SRP). Here SRP = ZFC + {there exists λ with 
the k-SRP}k.  
 
We expect to use the ideas and techniques of the BRT book 
to show that the Infinite Upper Shift Kernel Theorem, and 
the Infinite Upper Shift Kernel Theorem(k) for small k, are 
provably equivalent to Con(SRP) over ACA0. 
 
LEMMA 1. Let λ be least with the 2k+1-SRP. Let f:[λ]k → λ 
obey min(A) > 0 → f(A) < min(A). There exists stationary S 
⊆ λ such that f is constant on [S]k. (This can be improved 
with k+1 instead of 2k+1). 
 
Proof: Let λ,f be as given. Then λ is an uncountable regular 
cardinal. Let g:[λ]k+1 → 2 be defined as follows. Let α1 < 
... < α2k+1. Set g(α1,...,αk+1) = 0 if f(α1,...,αk) = 
f(α1,αk+1,...,α2k); 1 otherwise. Let E ⊆ λ\{0} be stationary, 
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where g is constant on [E]2k+1.   
 
case 1. g is constantly 0. Then the values of f(A), A ∈ 
[S]k, depend only on min(A). Let h:S → λ be given 
accordingly. Then h is regressive, and so h is constant on 
some stationary subset of E. Then f is constant on [E]k. 
 
case 2. f is constantly 1. Let α ∈ E. By a cardinality 
argument, there exists α < β1 < ... < β2k-2 such that 
f(α,β1,...,βk-1) = f(α,βk,...,βs). This is a contradiction.  
 
QED 
 
LEMMA 2. Let k ≥ 1. SRP proves the existence of an 
uncountable regular cardinal λ and a stationary subset S of 
λ with the following indiscernibility condition. Let 
α1,...,αk,β1,...,βk,γ1,...,γk < λ, where (α1,...,αk) and 
(β1,...,βk) are elements of Sk with the same order type, and 
γ1,...,γk < min(α1,...,αk,β1,...,βk). Let ϕ be a formula in 
∈,= with only the free variables v1,...,v3k. Then in L(λ), 
ϕ(α1,...,αk,γ1,...,γk) ↔ ϕ(β1,...,βk,γ1,...,γk).  
 
LEMMA 3. ACA0 + Con(SRP) proves the existence of a countable 
model M of ZFC + V = L (perhaps with nonstandard integers), 
and an unbounded set S of ordinals of M, with the following 
indiscernibility condition. Let k,n ≥ 1 and 
α1,...,αk,β1,...,βk,γ1,...,γn be ordinals of M, where 
(α1,...,αk) and (β1,...,βk) are elements of Sk with the same 
order type, and γ1,...,γn < min(α1,...,αk,β1,...,βk). Let ϕ be 
a formula in ∈,= with only the free variables v1,...,vk+n. 
Then ϕ(α1,...,αk,γ1,...,γn) ↔ ϕ(β1,...,βk,γ1,...,γn) holds in 
M. Furthermore, for all α < β from S, L(α) is an elementary 
submodel of L(β).  
 
We now work within ACA0 + Con(SRP), and let M,S be as given 
by Lemma 3.  
 
LEMMA 4. Let α0,α1,... be the first ω elements of S, with 
limit δ. Then the L(δ) of M satisfies ZFC, and the same 
indiscernibility condition as in Lemma 3 holds for α0,α1,... 
in L(δ). Also, each L(αi) is an elementary submodel of 
L(αi+1). 
 
LEMMA 5. There is a countable model M of ZFC + V = L, with 
indiscernibles α0 < α1 < ... as in Lemma 3, which are 
unbounded in M, and generate M in the sense that every 
element of M is definable over M from finitely many α's. 
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Also, each L(αi) is an elementary submodel of L(αi+1). 
 
LEMMA 6. There is a countable model M of ZFC + V = L, and 
an elementary embedding j:M → M, with a critical point α, 
where for all β ≥ α, we have β < j(β) < j(j(β)) < ... is 
unbounded in M. 
 
Let D = dom(M) ∩ On. 
 
LEMMA 7. The unique internal M kernel of every downward D-
digraph contains its image under j.  
 
LEMMA 8. (D,<,j,α) is isomorphic to (A,<,ush,0) for some 0 
∈ A ⊆ Q, where ush is the upper shift. 
 
We will prove Lemma 8 below. But it is now clear A is as 
required by the Infinite Upper Shift Kernel Theorem. We 
have thus proved the Infinite Upper Shift Kernel Theorem in 
ACA0 + Con(SRP). 
 
A thread is a set {β,j(β),j(j(β)),...}, where β ∉ rng(j). 
Clearly β ≥ α, and β < j(β) < ... is unbounded in M ∩ On. We 
say that this thread is generated by β. 
 
Obviously, D is made up of β < α, and infinitely many 
distinct threads σ1,σ2,... . We will assume that σ1 is the 
thread generated by α.  
 
By ordinary induction, for each k ≥ 0, we define a function 
fk from σ1 ∪ ... ∪ σk into Q which is order preserving, maps 
α to 0, and is the successor function, +1, along each 
thread.  
 
Start by defining f1 on thread σ1 by setting f1(jp(α)) = p.   
 
Suppose fk has been defined, k ≥ 1. Clearly σk+1 is disjoint 
from dom(fk). Let αk+1 be generated by β. Clearly β > α.  
 
Fix p ≥ 0 such that the threads σ2,...,σk+1 each meet 
(jp(α),jp+1(α)). They each have exactly one element in this 
open interval. Let these k ordinals of M be the γ's in the 
inequality chain 
 

1) jp(α) < γ1 < ... < γr < β* < γr+2 < ... < γk < jp+1(α) 
 
where β* is in the thread generated by β. Clearly p < f(γ1) 
< ... < f(γk) < p+1. If we replace p with p+t, t ≥ 0, then 
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we get the inequality chain  
 
2) jp+t(α) < jt(γ1) < ... < jt(γr) < jt(β*) < jt(γr+2) < ... < 

jt(γk) < jp+t+1(α). 
 
If we lower p to p+t, -p ≤ t ≤ -1, then we also get the same 
inequality chain, 2), but with perhaps one or more terms 
missing.  
 
Every element of σ2 ∪ ... ∪ σk appears exactly once in 
exactly one of these inequality chains, but not at the 
endpoints; the elements of σ1 appear at the endpoints.  
 
Now set fk+1 to extend fk by defining fk+1(β*) so that  
 
p < fk(γ1) < ... < fk(γr) < fk+1(β*) < fk(γr+2) < ... < fk(γk) < 

p+1. 
 
I.e., so that the inequality chain 1) is preserved under f. 
This also defines fk+1 on the entire thread generated by β, 
using shift, +1. Obviously, all of the inequality chains 
for p = 0,1,..., must be preserved under f by the induction 
hypothesis on fk. Take g = ∪kfk, and extend g in any way so 
that the ordinals of M strictly below α are sent to 
negative rationals in an order preserving way. QED 
 
2. FINITE UPPER SHIFT KERNEL THEOREM. 
 
There are general principles that allow us to look at the 
form of the  
Infinite Upper Shift Kernel Theorem(k) and see that it must 
be provably  
equivalent to a Π0

1 sentence over ACA0.This is more awkward 
for the Infinite Upper Shift Kernel Theorem.  
 
However, we also want to find a simple explicitly Π0

1 form 
of the Infinite Upper Shift Kernel Theorem or the Infinite 
Upper Shift Kernel Theorem(k).  
 
We have settled on a quantitative approach. We are also 
considering non quantitative approaches, but they haven't 
yet jelled into something suitably simple.  
 
We use convenient norms on Q^k. Let |q|, q ∈ Q, be the least 
integer n such that q can be written as a ratio of two 
integers of magnitude at most n. Let |x|, x ∈ Qk, be 
max(|x1|,...,|xk|). 
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The n-upper shift of B ⊆ Qk consists of the upper shifts of 
the elements of B of norm at most n. 
 
Let (B,E), B ⊆ Qk, be a digraph. An n-kernel in (B,E) is a 
set S ⊆ B such that 
 
i. No element of S connects to any element of S. 
ii. Every x in V\S of norm at most n connects to some 
element of S of norm at most |x|k + k. 
 
FINITE UPPER SHIFT KERNEL THEOREM. For each n > k > 1, 
there exists finite 0 ∈ A ⊆ Q such that every downward A,k-
digraph has an n-kernel containing its n-upper shift. 
Furthermore, we can require that every element of A have 
norm at most n^k+1. 
 
Note that the Finite Upper Shift Kernel Theorem is 
explicitly Π0

1.  
 
The Finite Upper Shift Kernel Theorem is proved from the 
Infinite Upper Shift Kernel Theorem by starting with 0 ∈ A 
⊆ Q from the Infinite Upper Shift Kernel Theorem, choosing 
the provided kernels, and building a tower of simultaneous 
approximations for A and the kernels. Since the conditions 
in question are purely order theoretic, we can move the 
elements of A around to conform to the norm ||.  
 
For any fixed k > 1, we can use a compactness argument to 
go from the Finite Upper Shift Kernel Theorem, to the 
Infinite Upper Shift Kernel Theorem(k).  
 
In this way, we see that the Finite Upper Shift Kernel 
Theorem is also equivalent to Con(SRP) over ACA0. We expect 
to be able to replace ACA0 here by EFA = exponential 
function arithmetic. 
 
3. TEMPLATES. 
 
The obvious item to Template is the upper shift. Recall 
that we first defined the upper shift as a function ush:Q → 
Q, and then lifted it to higher dimensions, and then used 
it for forward images.  
 
Ush is a special case of a rational pieceise, or even 
rational partial piecewise linear function from Q into Q.  
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TEMPLATE. Let f1,...,fn:Q → Q be partial rational piecewise 
linear functions. There exists 0 ∈ A ⊆ Q such that every 
downward A-digraph has a kernel containing its images under 
f1,...,fn.  
 
CONJECTURE. Every instance of the above Template is 
provable or refutable in SRP+ = ZFC + "for all k there 
exists λ with the k-SRUP".  
 
This should be within our existing technology. 
____________________________________ 
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