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LONG FINITE SEQUENCES FROM A FINITE 
ALPHABET

Is there a longest finite sequence x1,...,xn from {1,2} 
such that a certain pattern is avoided?

PATTERN TO BE AVOIDED. xi,...,x2i is a subsequence of 
xj,...,x2j, where i < j ≤ n/2. 

E.g., (2,1,2) is a subsequence of (1,2,2,2,1,1,1,2). 

ANSWER: Yes. n = 11. Gifted high school students in Paul 
Sally’s summer program can sometimes prove this. 

Is there a longest finite sequence x1,...,xn from {1,2,3} 
such that this pattern is avoided?

ANSWER: Yes. I gave a lower bound for n in 

Long Finite Sequences, Journal of Combinatorial Theory, 
Series A 95, 102-144 (2001).

n(3) > A7198(158386)

where Ap is the p-th Ackermann function from Z+ to Z+.



WHAT IS THE ACKERMANN HIERARCHY OF 
FUNCTIONS?

There are many versions that differ slightly. Most 
convenient: functions A1,A2,... from Z+ to Z+ such that 
i. A1(n) = 2n.
ii. Ai+1(n) = AiAi...Ai(1), where there are n Ai’s. 

We make some derivations. 

Ak(1) = 2. Ak(2) = 4. 

A2(n) = 2n. A3(n) is an exponential stack of n 2’s.

A3(3) = A2A2A2(1) = A2(4) = 16. A3(4) = A2(A3(3)) = A2(16) 
= 216 = 65,536. 

A4(3) = A3A3A3(1) = A3(4) = 216 = 65,536. 

A4(4) = A3A4(3) = A3(65,536), which is an exponential 
stack of 2’s of height 65,536.

Ackermann function is A(n) = An(n). A(5) = hard to 
“see”.

Recall n(3) > A7198(158386).



LONG FINITE SEQUENCES FROM A FINITE 
ALPHABET

Is there a longest sequence x1,...,xn from {1,...,k} 
avoiding this pattern?

ANSWER: Yes, for any k ≥ 1. However n(k), as a function 
of k, grows faster than all multiply recursive 
functions. The Ackermann function is a 2-recursive 
function. 

This Theorem can be proved using just Induction (Peano 
Arithmetic).

It can be proved in 3 quantifier induction but not in 2 
quantifier induction. This is an example of a Weakly 
Unprovable Theorem. See

Long Finite Sequences, Journal of Combinatorial Theory, 
Series A 95, 102-144 (2001).

Also: n(4) > AA...A(1), where there are A5(5) A’s. 

A(n) = An(n).



COUNTABLE SETS OF REALS AND RATIONALS

After you teach pointwise continuity of functions from a 
set of reals into the reals, you can state the following 
theorem. 

COMPARABILITY THEOREM. If A,B are countable sets of real 
numbers, then there is a one-one pointwise continuous 
function from A into B, or a one-one pointwise 
continuous function from B into A. 

This was well known from the early 20th century if A,B 
are countable and closed. 

Despite the elementary statement, my proof uses 
transfinite induction on all countable ordinals. I 
proved that this is required. See

Metamathematics of comparability, in: Reverse 
Mathematics, ed. S. Simpson, Lecture Notes in Logic, 
vol. 21, ASL, 201-218, 2005. 

Transfinite induction on all countable ordinals is 
required even if for just sets of rationals A,B.



HOW DO WE SAY MATHEMATICALLY THAT 
TRANSFINITE INDUCTION ON ALL 

COUNTABLE ORDINALS IS REQUIRED?

There are good proof theoretic ways of saying this, but 
here is a mathematical way. Experience shows that if we 
have a Theorem of the form 

*) (∀x ∈ X)(∃y ∈ X)(R(x,y)) 

where X is a complete separable metric space and R is a 
Borel relation, and if the proof is “normal”, then there 
is a Borel function H:X ➞ X such that 

**) (∀x ∈ X)(R(x,H(x)).

A huge number of Theorems of analysis can be put in form 
*), where **) holds for some Borel H. 

The Comparability Theorem can be put in form *), via 
infinite sequences of reals (R∞). Yet there is no Borel 
H with **). 



f(x1,...,xk) ≤ f(x2,...,xk+1)

THEOREM A. For all k,r ≥ 1 and f:Nk ➝ Nr, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤ 
f(x2,...,xk+1) coordinatewise.

THEOREM B. For all k ≥ 1 and f:Nk ➝ N, there exist 
distinct x1,...,xk+2 such that f(x1,...,xk) ≤ 
f(x2,...,xk+1) ≤ f(x3,...,xk+2).

THEOREM C. For all k ≥ 1 and f:Nk ➝ N, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1) -
f(x1,...,xk) ∈ 2N. 

For f given by an algorithm, A,B,C are statements in 
the language of Peano Arithmetic (PA). 

We have shown that A,B,C cannot be proved in PA for 
(even very efficiently) computable functions f. For 
any fixed k, the can be proved in PA for computable f.  

If we require that max(f(x)) ≤ max(x), then we obtain 
the existence of a uniform upper bound on the 
x1,...,xk+1. This yields a finite statement that is not 
provable in Peano Arithmetic. 



HOMEOMORPHIC EMBEDDINGS BETWEEN 
FINITE TREES

We use finite rooted trees. Each forms a topological 
space, with a notion of homeomorphic embedding between 
them. For our purposes, this is almost the same as an 
inf preserving one-one map from vertices into vertices. 

J.B. KRUSKAL. In any infinite sequence of finite trees, 
one is homeomorphically embeddable in a later one.

Kruskal’s proof and all subsequent proofs use 
uncountable sets. in particular, an infinite sequence of 
finite trees is constructed with reference to all such. 

We proved that this is necessary. In fact, necessary 
even for very computable infinite sequences. See

Internal finite tree embeddings, in: Lecture Notes in 
Logic, volume 15, 62-93, 2002, ASL.

There are stronger results related to the Graph Minor 
Theorem of Robertson and Seymour. See

(with N. Robertson and P. Seymour), The Metamathematics 
of the Graph Minor Theorem, AMS Contemporary Mathematics 
Series, vol. 65, 1987, 229-261. 



CANTOR’S THEOREM
BOREL DIAGONALIZATION

CANTOR. The reals are uncountable.
CANTOR. Every infinite sequence of reals omits a real.

The Hilbert cube ℜ∞ has the product topology. It is a 
Polish space (complete separable metric space). 

THEOREM. There is a Borel measurable F:ℜ∞ ➞ ℜ such that 
for all x ∈ ℜ∞, F(x) is not a coordinate of x. 

The standard proof produces an F where if x,y have the 
same range, then F(x),F(y) may be different. 

QUESTION: Is there a Borel diagonalizer F:ℜ∞ ➞ ℜ such 
that rng(x) = rng(y) ➞ F(x) = F(y)?

BOREL DIAGONALIZATION THEOREM. No. 

This is proved using a Baire category argument on ℜ∞, 
where ℜ is the discrete topology on ℜ. 

The Borel Diagonalization Theorem cannot be proved in 
SEPARABLE mathematics. 



BOREL SETS IN THE PLANE AND ONE 
DIMENSIONAL BOREL FUNCTIONS

In any topological space, the Borel sets form the least 
σ algebra of sets containing the open sets. For 
uncountable Polish spaces (complete separable metric 
spaces), this leads to a hierarchy of Borel sets of 
length ω1. However, most delicate issues arise at the 
finite levels, or even at the third level. 

THEOREM. (Using a result of D.A. Martin from Infinitely 
Long Game Theory). Every Borel set in ℜ2, symmetric about 
the line y = x, contains or is disjoint from the graph 
of a Borel function from ℜ into ℜ.

We proved that it is necessary and sufficient to use 
uncountably many iterations of the power set operation. 
For finite level Borel sets in ℜ2, it is necessary and 
sufficient to use infinitely many iterations of the 
power set operation. See

On the Necessary Use of Abstract Set Theory, Advances in 
Math., Vol. 41, No. 3, September 1981, pp. 209-280.



BOOLEAN RELATION THEORY

Boolean Relation Theory concerns Boolean relations 
between sets and their images under functions. This 
leads to Unprovable Theorems. There is a book draft on 
my website - Boolean Relation Theory and Incompleteness. 

The two starting points of BRT are the ZFC theorems

THIN SET THEOREM. For all f:Nk ➝ N, there exists 
infinite A ⊆ N such that f[Ak] ≠ N.

COMPLEMENTATION THEOREM. For all strictly dominating 
f:Nk → N, there is a unique A ⊆ N such that A ∪. f[Ak] = 
N.

Strictly dominating means f(x1,...,xk) > x1,...,xk. Also 
∪. is disjoint union.
 We restate as a Fixed Point Theorem:

COMPLEMENTATION THEOREM. For all strictly dominating 
f:Nk ➝ N, there is a unique A ⊆ N such that A = N\f[Ak].

There are some mildly exotic features of proofs, more so 
with the Thin Set Theorem. 



BOOLEAN RELATION THEORY
Let ELG be the set of all f:Nk ➝ N, k ≥ 1, where there 
exist c,d > 1 such that 

cmax(x) ≤ f(x) ≤ dmax(x)

holds for all but finitely many x ∈ Nk.

TEMPLATE. For all f,g ∈ ELG, there exists infinite A,B,C 
⊆ N such that 

X ∪. fY ⊆ V ∪. gW
 P ∪. fQ ⊆ R ∪. gS.

where the letters X,Y,V,W,P,Q,R,S are among the letters 
A,B,C. fE is f[Ek], where dom(f) = Nk, and ∪. means 
“disjoint union”. 

There are 38 = 6561 instances of the Template. All but 
12 are provable/refutable in a very weak fragment of 
ZFC. The 12 are provable using strongly Mahlo cardinals 
of finite order, but not in ZFC.

A ∪. fA ⊆ C ∪. gB
 A ∪. fB ⊆ C ∪. gC.



GRAPHS AND MAXIMAL CLIQUES

A graph on V is a pair G = (V,E), where E is an 
irreflexive symmetric relation on V. 

V is the set of vertices of G, and E is the adjacency 
relation.    

A clique in G is a subset of V such that any two 
distinct elements of V are adjacent.

A maximal clique in G is a clique in G which is not a 
proper subset of any clique in G. 

EVERY GRAPH HAS A MAXIMAL CLIQUE.

This is proved by Zorn’s Lemma, and is known to be 
equivalent to the axiom of choice over ZF. 

If the graph is countable, then there is a nice explicit 
construction of a maximal clique by what is called a 
greedy algorithm. 



INVARIANCE
 

Invariance is a principal theme in mathematics. We use 
the following general formulation.

Let R be any relation (set of ordered pairs). We define 
the R invariant subsets S of an ambient space K. 

We say that S ⊆ K is R invariant if and only if for all 
x,y ∈ K with R(x,y), we have x ∈ S ⇒ y ∈ S. 

We say that S ⊆ K is completely R invariant if and only 
if for all x,y ∈ K with R(x,y), we have x ∈ S ⇔ y ∈ S.

Two important cases: R is a function, R is an 
equivalence relation. Functions R are treated as 
relations.  



RATIONAL VECTORS AND 
ORDER INVARIANT GRAPHS

Q is the set of all rationals. Q* is the set of all 
nonempty finite sequences of rationals. Q[0,n] is the 
set of all rationals in [0,n].

All of our graphs are going to be on Q[0,n]k. 

We use order equivalence on Q*. x,y ∈ Q* are order 
equivalent if and only if lth(x) = lth(y) and for all 1 
≤ i,j ≤ lth(x), xi < xj ⇔ yi < yj. 

A graph on Q[0,n]k is said to be order invariant if and 
only if its adjacency relation E ⊆ Q[0,n]2k is invariant 
with respect to order equivalence on Q*. 

We now look at 

EVERY GRAPH ON Q[0,n]k HAS A MAXIMAL CLIQUE.

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS AN 
“INVARIANT” MAXIMAL CLIQUE. 



FULL SHIFT, UPPER HALF SHIFT

The Full Shift FS:Q* ➞ Q* is defined by FS(x) = x+1. 
I.e., add 1 to all coordinates. 

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS A COMPLETELY 
FS INVARIANT MAXIMAL CLIQUE.

Unfortunately, this is false for k ≥ 1, n ≥ 2.
We can restrict FS so this is true:

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS A COMPLETELY 
FS|(min ≥ 1) INVARIANT MAXIMAL CLIQUE.

For x ∈ Q*, the upper half consists of the coordinates 
greater than at least half of the coordinates. 

The Upper Half Shift UHS:Q* ➞ Q* is defined by UHS(x) = 
the result of adding 1 to the upper half. 

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS A COMPLETELY 
UHS INVARIANT MAXIMAL CLIQUE.

This is also false for k ≥ 1, n ≥ 2.

How do we fix this? 



UPPER HALF SHIFT

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS A COMPLETELY 
UHS INVARIANT MAXIMAL CLIQUE.

This is false. To fix it, we restrict UHS to the vectors 
where UHS shifts only positive integers. 

In general, T:Q* ➞ Q* restricted to the vectors where T 
moves only positive integers, is called T#. 

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS A COMPLETELY 
UHS# INVARIANT MAXIMAL CLIQUE.

This can be proved, but only by going well beyond the 
usual axioms of ZFC. 



A THIRD SHIFT, Z+↑
Define Z+↑:Q* ➞ Q* as follows. 

Z+↑(x) is the result of adding 1 to all coordinates of x 
that are greater than all coordinates of x outside Z+.

EVERY ORDER INVARIANT GRAPH ON Q[0,n]k HAS A COMPLETELY 

Z+↑ INVARIANT MAXIMAL CLIQUE.

This can be proved, but only by going well beyond the 
usual axioms of ZFC. 



WHAT ARE THE LARGE CARDINALS USED FOR 
BOOLEAN RELATION THEORY?  

strongly inaccessible cardinals
are not enough!

An (von Neumann) ordinal is the set of its predecessors, 
and a (von Neumann) cardinal is an ordinal not 
equinumerous with any predecessor.
 
κ is a strong limit cardinal iff for all α < κ, 

card(℘(α)) < κ. 

κ is a regular cardinal iff κ is not the sup of a subset 
of κ of cardinality < κ. 

κ is an inaccessible cardinal iff κ is a regular strong 
limit cardinal > ω.

ZFC does not suffice to prove the existence of a 
strongly inaccessible cardinal.

Grothendieck Topoi (strong kind).



WHAT ARE THE LARGE CARDINALS USED FOR 
BOOLEAN RELATION THEORY? 

strongly k-Mahlo cardinals

κ is a strongly 0-Mahlo cardinal iff κ is a strongly 
inaccessible cardinal.

κ is a strongly n+1-Mahlo cardinal iff κ is a strongly 
n-Mahlo cardinal such that every closed and unbounded 
subset of κ has an element that is a strongly n-Mahlo 
cardinal.

The 12 exotic cases in Boolean Relation Theory are 
provable in 

SMAH+ = ZFC + “for all k there exists a strongly k-Mahlo 
cardinal”, 

but (assuming SMAH is consistent) not in 

SMAH = ZFC + {there exists a strongly k-Mahlo cardinal}.

In fact, they are provably equivalent, in a weak 
fragment of ZFC, to the 1-consistency of SMAH.



WHAT ARE THE LARGE CARDINALS USED FOR 
THE INVARIANT MAXIMALITY THEOREMS? 

k-SRP ordinals

Let λ be a limit ordinal. We say that E ⊆ λ is 
stationary if and only if E meets every closed and 
unbounded subset of λ. 

We say that a limit ordinal λ has the k-SRP if and only 
if every 2 coloring of its k element subsets is 
monochromatic on a stationary subset of λ. 

The Invariant Maximality Theorems are provable in 

SRP+ = ZFC + “for all k there exists a k-SRP ordinal”, 

but (assuming SRP is consistent) not in 

SRP = ZFC + {there exists a k-SRP ordinal}k.

In fact, they are provable equivalent, in a weak 
fragment of ZFC, to the consistency of SRP.


